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Abstract. This work presents a general system that achieves an energy minimization-based 
dense stereo matching through simulated annealing. Dense stereo matching is based on point 
matching. We show the performance of our approach compared to correlation. We use an 
optimization method in order to take into consideration the global aspect of the problem, as 
opposed to the correlation that acts locally on windows, and be able to make this module 
cooperate with other early vision modules, for instance shape from shading and photometric 
stereo. The stereo matching problem is an ill-posed problem where the global minimum is 
hidden by local minima and where the notion of gradient does not exist. For this reason, the 
simulated annealing algorithm seems the most suitable to solve the stereo matching problem. 
The constraints of the stereo matching are expressed as an energy functional and elementary 
transformation.  

Résumé : Ce travail présente un système de mise en correspondance d’images 
stéréoscopiques à base d’optimisation stochastique, la mise en correspondance des images 
stéréoscopiques utilise principalement les primitives de ype points. Nous montrons les 
performances de notre approche par rapport à la corrélation. Nous avons exprimé le 
problème de mise en correspondance sous forme optimisationnelle pour mettre en avant son 
aspect global, alors que la corrélation agit localement. L’optimisation permet aussi de faire 
coopérer ce module avec d’autres modules de vision de bas niveau tels que la forme à partir 
de l’ombrage et la stéréo-photométrie. De plus, le problème de mise en correspondance est 
un problème mal-posé, où le minimum global est caché par des minima locaux et où la notion 
de gradient n’existe pas. Pour cette raison, l’algorithme du recuit simulé semble le plus 
adapté. Les contraintes de mise en correspondance sont exprimées par une fonctionnelle 
d’énergie et des transformations élémentaires.        

Keyword : Stereo disparity, stochastic optimization, image matching, constraints, 
resemblance, epipolar, uniqueness, continuity 
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*Une optimisation stochastique pour la correspondance stéréo dense   
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1. Introduction 

Dense stereo matching allows extraction of depth physical properties from 

two images of the same scene. Images are noted ),(
1

yxI and ),( yxI
r

, where 

 
x

nx ,,1  and  
yny ,,1  denote columns and lines respectively, and 

l
I  

and 
r

I  being the left-hand and right-hand side images. Two cameras which 

observe the same scene have a common field of vision. A point in the scene is 

projected on the two images in two points which have different coordinates 

due to the different points of view of the cameras. We express this shifting by 

horizontal and vertical disparities in the two directions (left-right and right-

left): ab

a xxyxdx ),(  and ab

a yyyxdy ),(  ;  ),(),,(),( lrrlba  . 

The two cameras do not observe exactly the same physical points in the 

scene, because some points can be out of the common field of vision or hidden 

by objects. A point observed by a single camera is declared as an occlusion in 

the image where it appears. Occlusions are noted ),( yxO
l

 and  1,0),( yxO
r

, 

where 0 stands for an occlusion. 

The points that are seen by both cameras can be matched. Disparities can be 

calculated by this point matching. Having the disparities, depth can easily be 

computed by triangulation using the cameras and the stereo rig parameters. 

Many works have been made in dense stereo matching such as correlation 

( Sunyoto, Van der Mark, Gavrila, 2004; Faugeras, Keriven, 1998; Jia et al. 

2004), and mean field annealing (Huang, Liu, 1997; Huq, Abidi, B, Abidi, M, 

2007). The aim of this work is to obtain better results than correlation by 

adding a global aspect to the stereo vision problem, the correlation inherently 

having a local aspect, and make this module cooperate with other early vision 

modules possible, for instance shape from shading and photometric stereo. In 

order to attain our objective, we formulate the problem in a stochastic 

optimization approach. The stereo matching is an ill-posed problem (Bertero, 

Poggio, Torre, 1988) which solution is hidden by local minima and where the 

notion of gradient does not exist. The most suitable algorithm is simulated 

annealing, S.A. algorithm, (Aarts, Laarhoven, 1987). For this purpose, stereo 

matching constraints need to be modeled by energy functional and elementary 

transformations. 

2. Simulated annealing 

Simulated annealing is a resolution method for general non linear 

optimization problems. It is suitable for large size problems, where the global 

minimum is hidden by several local minima and where the notion of gradient 

has no signification. This algorithm is applied to a combinatorial discrete 

problem. Metropolis (Metropolis, Rosenbluth, Teller, 1953) first incorporated 
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these kinds of principles into numerical computations. In order to use the S.A. 

algorithm, 6 conditions are required (Press and al. 2003) : 

1. A description of all possible system configurations  
i

xx   

2. An initialization  00

ixx   

3. A generator of random changes xx   

4. An energy functional )(xE  that describes the problem and which 
minimization is the goal of the procedure 

5. A high starting temperature 
0

T  

6. A temperature decrease rule TT   

2.1. Algorithm 

1) Begin with initial configuration 
0

xx   at a high start-ing temperature 

0
TT  . 

2) Research the thermal equilibrium at the temperature T . 

a) Propose a random change of the configuration xx   

b) Evaluate the energy differential due to this change: )()( xExEE   

c) i) If the energy decreases 0E  then accept the change xx  . ii) If 

the energy increases 0E then accept the change xx  with the 

probability TEe / . 

d) Repeat a) to c) until the thermal equilibrium is reached at the current 

floor temperature. 

3) Decrease the temperature TT  . 

4) Repeat 2) to 3) until the system reaches the minimum. 

In practice, we compare a random number between 0 and 1 with the 

Boltzmann exponential TEe / , and we accept the change if this number is 

smaller than this probability. The system reaches the thermal equilibrium after 

a certain number M of elementary transformations. The number M is set to 100 

by some authors. This number should rather depend on the size of the 

definition domain of the variables. If we try 100 transformations on a variable, 

there is a difference whether this variable can take one value out of 100, or one 

value out of 10000 values. In the first case, each value is tried once in average, 

whereas, in the second case, only 1% of the values is used. 

We propose to define M according to the size of the definition domain: 

)( inSizeofDoma . The parameter  is determined by experimentation. The 

system is considered at high temperature if more than 10% of M attempts are 

accepted, otherwise, it is at low temperature. If the system is at high 

temperature, it is considered in thermal equilibrium after 10% of M successful 
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transformations. We get to the next temperature floor by multiplying the 

control parameter T with a coefficient  : ;TT   10  . For a 

temperature decrease rule, we take 93.0  at high temperature and 96.0  

at low temperature. The procedure stops when no more transformations are 

accepted. 

3. Stereo matching 

We are only interested in stereo matching general constraints: the 

resemblance of the primitives, the epipolar lines, the continuity of the 

disparities and the uniqueness. These constraints are expressed as energy 

functional and elementary transformations. We consider the correspondences 

in both directions (left to right and right to left), in order to apply the continuity 

criterion to the two images and the validity criterion given by the uniqueness 

constraint for the matching. We handle the disparities and occlusions of the two 

images in a consistent way. 

3.1.  Resemblance constraint 

This constraint allows the matching of two points only if they have the same 

grey level. In the case of lambertian surfaces, a point in the scene has the same 

grey level in both images. A point is a corner of a pixel for which we attribute 

the average of the grey levels of its four adjacent neighbors: 


 


1

0

1

0

),(),(
k l

lykxIyxA  

We express this constraint by the square of the difference of the grey values 

associated with the matching candidates: 

  2),(),,(),( yxdyyyxdxxAyxA llrl   

This term is weighted with the term representing occlusions, because if 

there is any occlusion there will be no matching. The energy associated with 

this constraint over the whole image is: 

    ),(),(),,(),(
2

yxOyxdyyyxdxxAyxAE lllrl

R  

3.2. Epipolar constraint 

A point in the scene is projected on a point in the image. All the points in the 

scene which belong to the line going through the point of the scene and the 

optical center are projected on the same point in the image. The projection of 

this line on the other image represents the epipolar line associated with the 

point. A point can only be matched with a point in the other which lies on its 

epipolar line. The search space is reduced to the epipolar line. It is the only 

constraint that is due to stereoscopic geometry. It is expressed in the 

elementary transformations. 
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3.3.  Continuity constraint 

We consider the physical surfaces as locally continuous. In this case, their 

euclidean projection is continuous as well. The disparity varies a little, except 

on the edges; that is the reason why we cancel the continuity constraint at the 

edges, as well as we cancel the constraint on occlusions, where no matching 

exists. This constraint is expressed by the energy functional given hereafter. 

Horizontal and vertical edges are respectively denoted by 
x

c  and yc : 

 1,0),(),,( yxcyxc a

y

a

x , where 0 stands for the presence of an edge. 
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3.4. Occlusions counterweight 

With occlusions all over the image, the energy is minimal (null), but this is 

not a viable solution. This is why we add a counterweight in the energy 

functional in order to limit the number of occlusions.   For one image,  this 

energy functional is: 

  
x y

aa

O yxOE ),(1  

3.5. Uniqueness constraint 

Every point can only be matched with at most one point from the other 

image. This constraint was introduced by Marr (Marr, Poggio, 1979), and it is 

strictly verified in the case of the non transparent objects. 

This constraint simplifies the computations and enables the application of 

the validity criterion for a given matching. A matching is valid if both disparities 

(left to right and right to left) enable us to reach the point in the right hand side 

image from the point in the left hand side image and go back to the left hand 

side image initial point. This constraint is expressed in the elementary 

transformations. 
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3.6. Energy functional 

The energy functional of the stereo matching problem used by the S.A. 

algorithm is the weighted sum of the energy functionals derived from the 

stereo matching constraints: 

)()( r

O

l

OO

r

C

l

CCRR EEEEEE    

where   terms denote the weights. It is always possible to set one of them 

to 1 and determine the others accordingly. 

3.7. Elementary transformations 

The random changes generator is based on the definition of a set of 

elementary transformations with a decision rule for their application. Figure 1 

illustrates the elementary transformations, with the states before and after 

their application. What is shown is two conjugate epipolar lines. Any complex 

transformation could be obtained by combining these elementary 

transformations 



108 | Revue RIST | 2010, vol. 18, n° 2  

 

Figure 1 : Elementary transformations. 

a. Decision rule 

We select with equal random one of the two images and a first point. If this 

point has an occlusion, one of the transformations (0), (1A) or (1B) is applied. If 

its epipolar line is empty, (0) is applied, otherwise, a point in the epipolar line is 

selected with equal random for a potential matching. If the selected point has 

an occlusion, (1A) is applied, otherwise, we apply (1B). If the first point does 

not have an occlusion, we select with equal random either (2A) or {(2B),(2C)}. 

If the choice is {(2B),(2C)}, a point in the epipolar line is selected with equal 

random. If the selected point has an occlusion, (2B) is applied, otherwise (2C) is 

applied. 
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b. Transformations 

 (0): do nothing. 

 (1A): matches the first point with the selected point in its epipolar line. 

 (1B): a new matching between the first point and the selected point in its 
epipolar line; the former correspondent is occluded. 

 (2A): establishes two occlusions, one for the first point, the other for its 
correspondent. 

 (2B): occludes the first point former correspondent and establishes a new 
matching with the selected point in the epipolar line. 

 (2C): establishes two occlusions, one for the first point former 
correspondent and the other for correspondent of the selected point in the 
epipolar line; a new matching between the first point and the selected 
epipolar line point is set. 

The energy differential is computed locally. The configuration space 

corresponds to the configurations where the epipolar line and the uniqueness 

constraints as well as the validity criterion are respected. 

4. Correlation 

To make a fair comparison between the two approaches, correlation and 

S.A. algorithm, we have used the same resemblance constraint, epipolar 

constraint, uniqueness constraint, and validity criterion. The correlation 

consists in sweeping the candidate point over the epipolar line and to establish 

a matching with the point that minimizes the resemblance constraint. This is 

done in both directions (left to right and right to left). Only valid matches are 

kept. Invalid matches are cancelled and occlusions are set instead. 

5. Experimental results 

A simple method is used to compute the weighting coefficients in the energy 

functional. If a tolerance of 0.5 is allowed on the resemblance constraint, the 

matching is cancelled if the grey level difference is higher than this value: 

OR
  25.0 . With 1

O
 , we have 4

R
 . 

Furthermore, we assume, for a smooth surface that the difference in disparities is 

not higher than 1. If the accumulated disparities differences in 4 directions for a pair 

of matched points are larger than the energy provided by 2 occlusions, the 2 

occlusions are set: 
OC
  242 . With 1

O
 , we have 25.0

C
 . 

Finally, as we handle the two cases (left to right and right to left) altogether, 

we should set: 2
O
 . 

The results obtained with the weighting gains given above are already 

better than the ones obtained with the correlation. Even better results could be 
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obtained with thorough experimentations on the weighting gains. The starting 

temperature 0T  is set to 2, which corresponds to the system's state where, 

virtually, all the elementary transformations are accepted. The parameter   is 

set to 100. This parameter’s value has proven to give good results. 

We experimented our algorithm using both synthesized and real images. 

Figure 2 shows results on synthesized images. 

The figure shows the grey level stereo image pair. The images are produced 

by an image synthesis system developed for the purpose of verifying and 

analyzing an image analysis system. We considered 60x40 images to show the 

point aspect of the image. The data we were interested in are the depth 

physical properties. 

The depth maps generated by the image synthesis system (second row) and 

therefore corresponding to the solution are used to show the matching errors 

produced by the methods we are considering. The third and fifth rows show 

depth maps produced by the correlation and the S.A. algorithms respectively: 

black pixels stand for occlusions while grey shades correspond to different 

depths. Dark areas are closer while lighter ones are farther. The fourth and 

sixth rows show the error maps (difference between the produced depth map 

and the actual depth map generated by the image synthesis system): black 

pixels stand for areas where no measurements could have been done; dark 

areas represent large errors while lighter ones represent small or no errors. 

The correlation produced a large number of occlusions, due to a large 

number of invalid matches. The depth map contains too many errors. The 

correlation disparity map has been used as an initialization for the S.A. 

algorithm. This really does not influence the S.A. algorithm since the starting 

temperature 
0

T  is high enough to allow all the transformations to be accepted 

at the beginning, thus moving the system far way from the initialization. 

Another way to initialize the system could have been by setting up occlusions 

everywhere and initializing all the disparities to 0. The results generated by the 

S.A. algorithm show a small number of occlusions. The areas where depth is not 

correctly produced are less important than for the correlation. 
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Figure 2: Experimental results on synthesized imagery. 

Experimental results on real imagery are shown in figure 3. In this example, 

4 lighting conditions were used to generate the depth maps. First row shows 

one of four stereo image pairs. Second row shows the depth maps computed by 

correlation. Third row shows the depth maps computed using our energy 

model and the S.A. algorithm. 

6. Conclusion 

We have tackled the dense stereo matching problem in an optimizational 

approach. The S.A. algorithm produces better results than the equivalent 

correlation algorithm. The stereo vision module that we have developped is 
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meant to cooperate with the stereo photometry module (shape from shading), 

where the shape of the objects is used as a con-straint and the grey level for the 

resemblance constraint are replaced by the photometric characteristics of the 

Phong model (Phong, 1975), taking into consideration the grey level changes as 

a function of the position of the cameras. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Experimental results on real imagery. 
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