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This paper deals with the application of a new neuron, the TLS EXIN neuron, to 
AC induction motor drives. In particular, it addresses two important subjects of 
AC induction motor drives: the on-line estimation of the electrical parameters of 
the machine and the speed estimation in sensorless drives. On this basis, this 
work summarizes the parameter estimation and sensorless techniques already 
developed by the authors over these last few years, all based on the TLS EXIN. 
With regard to sensorless, two techniques are proposed: one based on the MRAS 
and the other based on the full-order Luenberger observer. The work show some of 
the most significant results obtained by the authors in these fields and stresses the 
important potentiality of this new neural technique in AC induction machine 
drives. 

Keywords: Induction Motor drives, Parameter estimation, Sensorless Control, Total 
Least-Squares. 

1. INTRODUCTION 

Parameter identification and sensorless control in electrical drives with 
induction motors have been two very important issues dealt with in the 
literature. The on-line estimation of the electrical parameters of an induction 
motors [1][2] is recognized a key-element in many industrial applications of 
electrical drives with induction motors for its importance in the proper working 
of flux estimation in adjustable speed-drives. On the other hand in electrical 
drives with induction motors, which require both low and high performances, 
closed loop speed control is usually achieved by means of speed observers 
trying to avoid the employment of the speed sensors whose mounting 
arrangements on the shaft of the motor reduce its reliability and increase the 
overall cost of the drive, especially for low cost drives. For these reasons both 
parameter estimation [3]-[7] and sensorless control [8]-[18] techniques of 
induction motors are important subject of research since many years.  

A great deal of methods have been developed to solve both problems, like the 
Extended Kalman Filter (EKF) or the Luenberger Observer (LO) or Model 
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Adaptive Reference Systems (MRAS) or the Artificial Neural Networks (ANN) 
[1] or Least-Squares Methods. The suitable use of this last technique, 
sometimes in combination with the above first techniques has given rise to a 
research line carried out by the authors in the field of parameter estimation and 
sensorless control of induction motor drives. In particular, a novel neural 
technique called TLS EXIN neuron, has been theoretically developed [19][20] 
and applied experimentally to parameter estimation [21]-[26] and sensorless 
control [27]-[30]. 

With reference to the parameter estimation in the induction motor, the problem 
has been faced up to as a constrained minimisation of the residual error 
function of least-squares problems: actually classical least squares methods 
(Ordinary least Squares = OLS) have been shown not to be the best approach to 
this problem, because noise affects the measurements of stator voltages and 
currents; therefore orthogonal regression methods (Total Least Squares = TLS) 
have been employed. All the LS based parameter estimation methodologies 
have been applied numerically and experimentally to simply converter fed 
machines [24][25][26] and to field oriented control or direct torque control 
induction motor drives [21][22], for the on-line flux model adaptation. These 
methodologies have also been applied to retrieve, after a set of start-up tests, 
the variation law of the magnetic parameters of the machine versus the rotor 
magnetising current [23]. 

With reference to speed estimation in sensorless induction motor drives, the LS 
techniques have been combined with other well-known methodologies to create 
hybrid classic/neural speed observers. With this regard, firstly an MRAS speed 
observer has been devised, where the adaptive model is a ADALINE trained 
on-line by means of a classical OLS algorithm [27]. This observer has been 
then further improved [30], especially in its low and zero speed behaviour, by 
training on-line the adaptive neural model with a TLS-based law and by 
adopting a suitably devised adaptive integrator, which enables to cut-off 
definitely any DC bias present at the input of the integrator [31]. In the end, a 
new adaptive speed observer has been devised [29], based on the full-order 
Luenberger observer whose the adaptive speed estimation is based on a TLS 
algorithm. This speed observer has shown further better results both in its low 
and zero speed operation. 

In the following a brief summary is given of the criteria adopted for the design 
and application of the TLS EXIN neuron to parameter estimation and 
sensorless control of induction motors.  The most significant achieved results 
are presented in the last part. 



J. Electrical Systems 1-1 (2005): 1-18 
 

 3

2. THE LEAST-SQUARES TECHNIQUES 

In general Least-Squares [32] solve a linear over-determined problem of the 
type bAx ≈  in which A m n×∈ ℜ  (ℜ  is the set of real numbers), with m>n, is 
the data matrix, b m∈ ℜ  is the observation vector and x n∈ ℜ  is the vector of 
unknowns. In the following it is shown that both the parameter estimation 
problem, under certain simplifications, and the speed estimation problem, when 
applied to MRAS or adaptive full-order observers, can be formalised as a linear 
over-determined problem. 

In the literature there generally exist three Least-Squares techniques: the 
Ordinary Least-Squares (OLS), the Total Least-Squares (TLS) and the Data 
Least-Squares (DLS) in accordance to where data errors are present. 

In classical Ordinary Least-Squares (OLS) each element of the A matrix is 
assumed without any error: therefore all errors are confined to the observation 
vector b. However this assumption does not always correspond to the reality: 
modelling errors, measurement errors etc. can actually cause errors also in the 
A matrix. Thus in real world applications the employment of TLS would be 
very often better, because it takes into consideration also the errors in the data 
matrix. DLS, finally, deals with the case when all errors are confined in the data 
matrix. 

 
Fig. 1:  Differences among LS techniques 

In the mono-dimensional case (n=1) the resolution of the LS problem consists 
in determining the angular coefficient x of the straight line of equation 
Ax b= . The LS technique solves for this problem by computing the value of x 
which minimises the sum of squares of the distances among the elements 

 (A , b )i i , with 1, ,i m= , and the line itself. Fig. 1 shows the difference 
among the OLS, TLS and DLS. OLS minimises the sum of squares of the 
distances in the b direction (error only in the observation vector). TLS 
minimises the sum of squares in the direction orthogonal to the line (for this 
reason it is also called orthogonal regression), while DLS minimises the sum of 
squares in the A direction (errors only in the data matrix). In particular it must 
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be expected that, in absence of noise, the results obtained with TLS are equal to 
those obtained with OLS; however in presence of increasing noise the 
performance of TLS proves to be generally better than that of OLS. TLS 
algorithm is therefore particularly suitable for estimation processes where data 
are affected by noise; this is certainly the case of the on-line estimation of 
induction motor parameters and sensorless control, where errors in the data 
matrix and the observation vector can easily occur. 

3. THE TLS EXIN NEURON 

Given the matrix equation bAx ≈ , it is well known that the TLS solution is 
obtained by minimising the following error function [19][20]: 

( ) ( ) [ ]
2

2
2

2

1

1 1

A;b x ;Ax b Ax b
(x)

x x x ;

TTT

TLS T TT

 − − −
Ε = =

+  − 

       (1) 

which is the Rayleigh Quotient of [ ] [ ]bA;bA T;  constrained to the TLS 
hyperplane, defined by 1 1n+ = −x . Hence, the TLS solution is parallel to the 
right singular vector ( 1n+∈ ℜ ) corresponding to the minimum singular value of 
[ ]bA; , that is its minor component (MC) vector. This TLS solution is called 
generic. The error (1) has 1n +  critical points, i.e. one minimum (the generic 
TLS solution), one maximum and n-1 saddle points. If the MC vector is parallel 
to the TLS hyperplane, the TLS solution cannot be computed and the TLS 
problem is called nongeneric. This problem occurs whenever A is rank-
deficient or when the set of equations is highly conflicting, as in the case of 
high modeling error. Although exact nongeneric TLS problems seldom occur, 
close-to-nongeneric TLS problems are not uncommon. In the latter case, the 
generic TLS solution tends to infinity. It has been proved in [20] that the 
nongeneric TLS solution is given by the saddle point of lowest error and in 
[32]-[34] that this solution can be achieved by adding a constraint to the TLS 
error minimisation (the solution is constrained to be orthogonal to the direction 
of the minimum), here defined as the nongeneric constraint. In the case of 
close-to-nongeneric TLS problems, the solution stands between this saddle and 
the minimum of the error function. 
From (1) it holds: 

( ) ( ) ( )
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m

i
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i =

Ε = Ε∑                (2)  

where:  
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being i  the index of the i -th row of [ ]bA; . Hence, 
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and the corresponding steepest descent discrete time formula is given by: 

( ) ( ) ( ) ( ) ( ) ( ) ( )21 it t t t t t t + = − α γ + α γ x x a x        (4) 

where  

( ) ( )
( ) ( )1 x xT

t
t

t t

δ
γ =

+
               (5) 

This is the learning law of the TLS EXIN neuron [19][20] and ( )iΕ is its error 
function. The TLS EXIN neuron is a linear unit with n inputs  (vector ia ), n  
weights (vector x), one output (scalar T

i iy = x a ) and one training error (scalar 
( )tδ ). In [19] it is proved that the Hessian matrix of the TLS error function is 

positive definite (which implies the nonsingularity) at the minimum of the error 
function. Thus it can be accelerated by the Newton and quasi-Newton (e.g. 
BFGS) techniques; however the algorithm requires a domain of convergence, 
i.e. it does not converge for every possible choice of the initial conditions. This 
domain has been analytically studied in [20] where it is proved the fundamental 
statement that the TLS origin always belongs to the TLS domain of 
convergence. In [20] it is also proved that the TLS EXIN neuron, for null initial 
conditions, unlike the direct methods which require a numerical rank 
estimation, yields the correct solution independently of the fact that the TLS 
problem is generic or not (in this case it automatically implements the 
nongeneric constraint) and is the only possible technique for solving the close-
to-nongeneric TLS problems. As explained in [20] the TLS EXIN neuron is the 
best algorithm for solving the TLS problem in a recursive way. In [20] a 
complete theory about this neuron is given: the stability, the transient, the 
speed, the accuracy and its tracking capability in system identification are fully 
analyzed both analitically and experimentally. This justifies the adoption of this 
neuron for the on-line identification of an electrical machine. 

4. TLS BASED IDENTIFICATION OF INDUCTION MACHINES 

From the space-vector equations of the induction motor in the stator reference 
frame [1] the following matrix equation results: 
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where the following parameters, called K -parameters, are defined as in 
[25][26]: 
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For the symbols see the list. Between these five K-parameters the following  
quadratic relationship exists: 

2 4 31 5K K K K=                  (8) 

Under the assumption that:  

0rd dtω ≈                   (9) 

i.e. considering the rotor at standstill, in slow transients or in sinusoidal steady-
state, (6) can be split into the following scalar equations where the term 
containing ψ’r disappears: 

1 2

2 2

31 2

4 2

5

sD sD sQsD
sD r sQ r sQ sD r

sQ sQ sQ sD
sQ r sD r sD sQ r

K
di dv did ii i u u K
dt dt dtdtK
di dv d i diKi i u u
dt dt dtdtK

 
     ω − + ω −  − − ω          =       −ω − − ω − − + ω             

 

                     (10) 
This matrix equation (10) can be written in the above mentioned form: 

≈Ax b                    (11) 

The equation (11) can be solved for the K -parameters both in steady-state and 
transient in real-time by using any least-squares method. From the assumption 
(9) it results that in any case the LS solution is biased, because of neglecting the 
modelling error, i.e. the term containing rψ' . 
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From the K-parameters not all the five electrical parameters 
( s r s r mR R L L L, , , , ) can be retrieved, because no rotor measurements are 
available: in fact the K-parameters determine only four independent parameters 
in the following way: 

4

5
r
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T

K
= , 312

5 4
s

KK
R

K K
= = , 1 31

5
s

K K
L

K
−

= , 
( )

5

4 1 31

K
K K K

σ =
−

     (12) 

The identification problem with least-squares algorithms is usually solved for  
by means of an unconstrained minimisation of the 2-norm of the error with a 
simple gradient descent algorithm [3]. This approach fails in computing 2K  
because the particular structure of matrix A implies a very low value of the 2nd 
column of the matrix T=R A A  and this means that this problem is ill-
conditioned ( 2K  problem): this results in a flat error surface along the 2K  
direction [26]. Numerical scaling does not help in solving this problem. In [24] 
this problem was attacked by devising an estimation method which considers 
the constraint (8) indirectly and has good tracking capabilities: in particular in 
transient conditions all four electrical parameters can be retrieved, since the 
data matrix is full rank, while in sinusoidal steady-state only two K -
parameters can be computed, since the data matrix has rank 2. Consequently 
only one electrical parameter can be obtained in sinusoidal steady-state, in 
particular the rotor time constant for vector-controlled induction motor drives 
and the stator resistance for direct-torque controlled induction motor drives. In 
these works a selection algorithm has been then developed for choosing the 
parameters to be estimated in all working conditions. 

4.1 Results 

As an example, the experimental results of a test is shown in the following. The 
motor has been supplied by giving to the voltage source inverter a reference 
sinusoidal voltage of 220 V and 50 Hz. The whole speed transient from zero 
speed to steady state speed has been exploited to estimate all four electrical 
parameters of the induction motor (rotor time constant, stator resistance, stator 
inductance, global leakage factor). Fig. 2 a shows the rotor speed and the isD, isQ 
stator current components during the start-up of the motor with no load 
obtained in the experimental test (see the appendix for some detail on the test 
setup). Fig. 2 b shows the true parameters of the machine (obtained with the 
classic no-load and locked rotor tests) and the waveforms of the estimated ones, 
computed respectively with a classic OLS and with the TLS EXIN, when a 
uniformly distributed noise between –0.05 and +0.05 p.u. of the rated voltage 
and current has been given to each acquired signal, so as to have noisy elements 
both in the data matrix and the observation vector. This has been done to 
emulate an electromagnetically polluted environment in which the data from 
sensors are corrupted by noise. 
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Fig. 2 a: Rotor speed and isD, isQ stator current components 
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Fig. 2 b. Real and estimated electrical parameters of the motor with noise  

5. TLS BASED SENSORLESS CONTROL 

LS based techniques can be suitably employed to improve the performances of 
the existing speed observers. The most of speed observers in literature based on 
the approximation of sinusoidal windings employ a flux estimator, which can 
be a simple open-loop flux estimator [11] or even a closed-loop full-order 
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[13][14] or reduced order [12] observer, and then an adaptive law is devised to 
compute on-line the value of the speed of the machine. This adaptation law is 
usually found on the basis either of the Popov hyperstability theorem [11][12] 
or the Lyapunov stability function [13], in order to guarantee the overall 
stability of the speed observer. A completely different approach has been 
followed by the authors, based on the idea that the induction machine equations 
can be rewritten in a matrix form of the type bAx ≈ , where the vector of 
unknown x is in this case the scalar variable “rotor speed”. This matrix 
equation can be suitably solved on-line by means of any recursive LS technique 
and since, as it will be clearly shown in the following, the data matrix is 
supposed to be affected by errors due to incorrect modelling and noisy 
measurements, the TLS EXIN should be used to retrieve the rotor speed. In 
addition, since the behaviour of this neuron has been theoretically  investigated 
[19][20], the stability of the speed observers is guaranteed and it has been 
analytically proved. This idea has given rise to the development of two speed 
observers which employ the TLS EXIN neuron, the first is an MRAS-based  
speed observer [30] and the second is a full order adaptive speed observer [29]. 

5.1 TLS MRAS Speed observer 

In the proposed MRAS speed observer [30] the reference model is based on the 
stator equations of the induction motor [1][2], while the adaptive model is an 
Artificial Neural Network. In particular the reference model, because of the 
open-loop integration, employs an adaptive integrator [31] instead of low-pass 
filters to avoid the DC drift problem. The adaptive model is an ADALINE 
(Linear Neural Network) which reproduces the rotor equations of the induction 
motor (current model) [1][2]. The speed is then computed by employing the 
rotor flux linkage error between the voltage and the current models, as shown 
in Fig. 3. The ANN has 4 inputs and 2 outputs and is described by the 
following discrete equations : 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3

1 2 3

1 1 1
1 1 1

rd rd rq sD

rq rq rd sQ

k w k w k w i k
k w k w k w i k

ψ = ψ − − ψ − + −
ψ = ψ − + ψ − + −

ˆ ˆ ˆ
ˆ ˆ ˆ    (13) 

where k is the current time sample, rdψ̂  and rqψ̂  are the direct and quadrature 
components of the rotor flux linkage in the stator reference frame and 

1 2 3  w w w, ,  are the weights of the neural networks which, to satisfy the rotor 
equations of the induction motor, must be equal to: 1 1 rw T T= - /  2 rw T= ω , 

3 m rw TL T= / , where T  is the sampling time of the control system.  
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Fig. 3: Block diagram of the ANN MRAS observer 

It should be remarked that the values of the rotor flux-linkage components at 
the input of the ANN are those coming from the reference model, and not from 
the adaptive one as in [16]. The neural network is not therefore used in the 
usual “simulation” mode, where its delayed output is used as its input, but in 
the “prediction” mode, where the delayed output of the voltage model is used 
as input to the neural network: this trick which enables a quicker and more 
stable convergence of the estimation algorithm. In the ANN the weights w1 and 
w3 are kept constant to their values computed off-line while only w2 is adapted 
on-line by means of the TLS EXIN algorithm. Eq (13) can be written in the 
following matrix form, considering the fact that the ANN is used as a predictor 
and not as a simulator: 

( )
( )

( ) ( ) ( )
( ) ( ) ( )

1 3
2

1 3

1 11
1 11

rd rd sDrq

rq rq sQrd

k w k w i kk
w

k w k w i kk

   ψ − ψ − − −ψ −
=    ψ − ψ − − −−ψ −   

ˆ
ˆ   

                     (14) 

which is a classical matrix equation of the type Ax≈b. In this respect (14) 
shows that the matrix A is composed of the dq axis components of the rotor 
flux linkage which can be affected by errors and noise resulting from open-loop 
integration of the model reference or measurements and the same can be said 
for the observation vector b which is also composed of the dq axis components 
of the rotor flux linkage and the dq components of the stator current space 
vector: then this problem is a TLS one, rather than an ordinary LS problem, so 
any Least-Squares technique different from TLS would be inadequate. 

5.2 TLS Full-order Speed Observer 

The state equations in the stationary reference frame of the induction machine 
are given by: 
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See the list of symbols in the appendix. 

The full order Luenberger state observer estimating the stator current and the 
rotor flux is given as usual by [13]: 

( )s s s

d
dt

= + + −x̂ ˆ ˆˆAx Bu G i i              (17) 

where ∧  means the estimated values and G is the observer gain matrix which is 
designed so that the above observer can be stable. 

The Total Least-Squares (TLS) based speed observer derives from a 
modification of (15) with G=0 in the sense that it exploits the two first scalar 
equations to estimate the rotor speed, as shown below in discrete form for 
digital implementation: 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
11 1212

11 1212

1 1 1 11
1

1 1 1 11
sD sD s sD r s rd s sDs rq

r
sQ sQ s sQ r s rq s sQs rd

i k i k a Ti k a pT k bTu ka T k
k

i k i k a Ti k a pT k bTu ka T k

   − − − − − ψ − − −− ψ −
ω − =   − − − − − ψ − − −ψ −   

ˆˆ
ˆˆ

                     (18) 

where 1r rp T= /  sT  is the sampling time of the control algorithm and k  is the 
current time sample. Even eq. (18) is a matrix equation of the type Ax≈b, and 
for the same reasons explained in §4.1 the most suitable technique to be used to 



Cirrincione et al: On the application of TLS techniques to AC electrical drives 
 

 12

compute on-line the rotor speed is the TLS. Also in this case, the TLS EXIN 
neuron has been adopted to solve the TLS problem on-line in a recursive form.  

Fig. 4 shows the block diagram of the new adaptive TLS based speed observer. 
It should be remarked that the computation of the rotor speed by means of the 
TLS estimator is performed through the minimisation of the residual of the 
matrix equation (18).  

 
Fig. 4: Block diagram of the TLS based adaptive speed observer 

5.3 Results 

As an example, the experimental results of one test obtained with each 
sensorless scheme are shown in the following. It should be remarked that the 
two proposed sensorless schemes have been employed in a rotor-flux-oriented 
vector control scheme [30]. To highlight the performance of the proposed 
sensorless schemes, a speed reversal has been given the drive at very low speed 
with machine magnetized at rated flux (1 Wb in this case). In particular, speed 
reversals from -10 to 10 rad/s and from 1 to -1 rad/s have been commanded, 
respectively to the TLS MRAS observer and to the TLS adaptive observer. 
Fig.s 5 and 6 show the reference, the estimated and the measured speed under 
this test with both speed observers (the measured speed is employed only for 
assessing the observer since the observed speed is fed-back to the control 
system). It should be remarked that the TLS adaptive observer permits the 
speed reversal to be performed at a lower speed that that achievable with the 
TLS MRAS, as expected. 
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Fig.5: Reference, estimated and  measured speed during a speed reversal from –10 rad/s 

to 10 rad/s at no-load with the TLS MRAS Observer 
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Fig. 6: Reference, estimated, measured speed and speed estimation error during a speed 

reversal from 1 rad/s to –1 rad/s with the TLS adaptive observer 
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6. CONCLUSION 

This paper deals with the application of a new ANN technique, the so-called 
TLS EXIN neuron, to AC induction motor drives. In particular, it addresses two 
important subjects of AC induction motor drives: the on-line estimation of the 
electrical parameters of the machine, to be used for example for flux model 
adaptation in high-performance drives, and the speed estimation in sensorless 
drives. On this basis, this paper summarizes the results obtained in these two 
fields by the authors over the last few years and stresses the important 
potentiality of this new neural technique in AC drives. In detail, the 
employment of the TLS EXIN neuron permits the performance of classic 
techniques to be enhanced, both in parameter estimation and sensorless control, 
for the following reasons: 

- Higher accuracy of the parameter estimation can be achieved, 
especially in presence of noisy data, which are typical of 
electromagnetically polluted environments; 

- In sensorless drives lower working speeds can be achieved with high 
accuracy speed estimation, both at no-load and at load; correct zero 
speed operation at no-load and at medium-low loads can also be 
attained. 

APPENDIX: TEST SETUP 

The employed test set up consists of [26][30]: 

• A three-phase induction motor or rated power 2.2 kW;  

• A frequency converter which consists of a three-phase diode rectifier and a 
7.5 kVA, three-phase VSI;  

• A DC machine for loading the induction machine of rated power 1.5 kW; 

• An electronic AC-DC converter (three-phase diode rectifier and a full-
bridge DC-DC converter) for supplying the DC machine of rated power 4 
kVA; 

• A dSPACE card (DS1103) with a PowerPC 604e at 400 MHz and a 
floating-point DSP TMS320F240. 

LIST OF SYMBOLS 

us=  space vector of the stator voltages in the stator reference frame; 

usD, usQ = direct and quadrature components of the stator voltages in the stator 
reference frame; 
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is=  space vector of the stator currents in the stator reference frame; 

isD, isQ = direct and quadrature components of the stator currents in the stator 
reference frame; 

ψ’r=  space vector of the rotor flux-linkages in the stator reference frame; 

ψrd, ψrq = direct and quadrature component of the rotor flux linkage in the stator 
reference frame; 

sL  = stator inductance. 

rL   = rotor inductance.  

Lm = total static magnetising inductance; 

sR   = resistance of a stator phase winding. 

rR   = resistance of a rotor phase winding.   

Ts = stator time constant; 

Tr = rotor time constant; 

0β =Rr/Lr=inverse of the rotor time constant rT  

( )m s rL L Lβ = σ/  

21 /( )m s rL L Lσ = −  =total leakage factor; 

p = number of pole pairs; 

 mrω  = angular rotor speed (in mechanical angles per second); 

rω  = angular rotor speed (in electrical angles per second); 

T = sampling time of the control system. 
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