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This paper deals with the application of non-linear predictive control with neural
networks to Proton Exchange Membrane Fuel Cells (PEM-FC). The control
objective is to regulate the cell voltage, acting on the hydrogen pressure, trying to
reduce the variation of the input control variable. An analysis of the non-linearities
of the fuel cell stack has been carried out, making use of a suitable fuel cell model.
The non-linear predictive control has been implemented by several neural networks
(multi value perceptrons), after dividing the operating domain into three areas
according to the cell current value (low loads, quasi-linear zone and high loads).
Simulation results have been provided and discussed, showing the goodness of the
proposed non-linear control technique in reducing the variations of hydrogen
pressure.
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1. INTRODUCTION

Over the last few years the fuel cells have been actively studied for their
promising capability for alternative stationary and mobile power generation.
Fuel cells in general show 1) good efficiency, even at reduced loads, which is
generally required in ground vehicle propulsion, in comparison with heat
engines, 2) low audible emissions, 3) low emissions of pollutants, 4) reliability
and durability. In particular Proton Exchange Membrane Fuel Cells (PEM-FC)
seem to be a good alternative for distributed generation (DG) [1] and ground
vehicle applications, because of high power density, solid electrolyte, low
corrosion, low-temperature operation. However, some issues are still of
concern, in particular their cost, their size and weight, and the complexity of
peripheral devices. Moreover there are some problems related to the dynamic
response [1][2], especially in terms of fast load change response, peak power
and peak current capability.

Since fuel cells generation systems have low voltage and high current output
characteristic, the system performance is very sensitive to load variations [3],
which means that any control system should compensate this by making the
output voltage as constant as possible while penalizing variations in the gas
pressure input control variable, which is beneficial for improving the life of the
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stack as well as for reducing the maintenance costs of the fuel cell generation
system [4].

However, since the fuel cell is an electrochemical device and has nonlinear
characteristics, it is very difficult to control it, and this control task is even
more difficult when all the fuel cell generation plant is considered, which
consists also of many nonlinear subsystems interacting with others [5]. Many
dynamical fuel cell system models have been proposed so far. In [6] a
simplified model has been developed in which both the reformer and the stack
have been approximated by first-order systems and a fuzzy control has been
designed for improving the system performance. In [4] a control oriented model
has been developed, which is an improvement of a former model [7][8],
capable of predicting the output voltage of the PEM-FC as a function of the
actual current load also taking into account its dynamical behaviour in a way
which makes it suitable for electrical engineering purposes. This has made it
possible to test a neural optimal control (NOC) for achieving reduced pressure
variations [9]. This model has proved particularly interesting to test different
control techniques for PEM-FC.

This paper makes use of this model in order to test a neural non-linear
predictive control strategy [10] so as to obtain the same above control
objectives. At first, a analysis of the non-linearities of the fuel cell stack has
been made, making use of the above FC model. In particular, this analysis has
been carried out by projecting the 4-dimension (hydrogen pressure, current,
voltage and temperature of the cell) data of the model into a 2-dimensional and
1-dimensional space. Then the non-linear predictive control has been
implemented by several neural networks (multi value perceptrons), after
dividing the operating domain into three areas according to the cell current
value (low loads, quasi-linear zone and high loads). Simulation results have
been provided, showing the goodness of the proposed non-linear control
technique in reducing the variations of hydrogen pressure.

2. DYNAMIC MODEL OF THE PEM-FC

Today, there are many different technologies associated with Fuel Cell based
energy conversion. The specific technology to be used depends mainly on the
amount of energy required by the specific application. For low-power domestic
appliances, the most used technology is currently the PEM-FC.

The PEM-FC converts chemical energy into electric one, by employing
hydrogen (H2) as fuel and oxygen (O2) as oxydizer, giving heat and water as
undesired products. A typical generation scheme based on a PEM-FC is shown
in Fig. 1.
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In literature, different mathematical models have been devised to simulate the
behaviour of a PEM-FC. Some are based on curve-fitting experiments [11],
others are semi-empirical models that combine experimental data with
parametric equations adjusted by comparison with cells physical variables like
pressure and temperature [12]. In both cases, the concentration over-potential
phenomenon, which is crucial in describing the dynamical behaviour of such
systems, is not adequately modelled. The work developed in [4][9] correctly
considers this effect, and for this reason has been adopted as a benchmark for
the simulations described in the following.

The output voltage VFC of a single cell can be written as:

= − − −FC Nernst act ohmic conV E V V V (1)

where ENernst is the thermodynamic potential of the cell, which represents the
reversible voltage; Vact is the activation overpotential, caused by  the activation
of the anode and the chatode (a measure of the voltage drop of the electrodes);
Vohmic is the ohmic overpotential which takes into account the resistances during
conduction of the protons through the solid electrolyte and the electrons
through their path; Vcon is the concentration overpotential, which considers the
voltage drop caused by the reduction of concentration of reactants gases or,
alternatively, by the transport of masses of oxygen and hydrogen. As clearly
written in [4] there is another voltage drop term associated with the internal
currents, which is the fuel crossover [12]. This effect has been considered in the
adopted model, considering a constant current density even at no-load. In
synthesis, ENernst represent the no-load voltage, while the sum of all the other
terms gives the reduction of the useful voltage VFC achievable at the cell
terminals, when a certain load current is required.

For n cells connected in series, forming a stack, the voltage sV  is calculated as

=s FCV nV (2)

PEM-FC

hydrogen

oxygen/air

electricity

heat

water

Fig. 1: Input/output representation of a PEM-FC

2.1 Cell Reversible Voltage

The reversible voltage of the cell (ENernst) is the open-circuit voltage and is
computed from a modified version of Nernst equations, considering the
possible variations of temperature from the standard value of 25 °C.
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( ) ( ) ( )2 2

3 5 11.229 0.85 10 298.15  4.31 10 ln ln
2

− −  = − − + +  
Nernst H OE T T P P (3)

where T  is the cell operation temperature in [K], 
2HP and 

2OP are respectively
the hydrogen and oxygen partial pressures in [atm].

2.2 Activation Overpotential

The activation overpotential , including both the anode and the cathode, can be
computed as:

( ) ( )
21 2 3 4ln ln= − ξ + ξ + ξ +  ξact O FCV T T c T i (4)

where iFC is the cell load current in [A], and ξ’s are the parametric coefficients,
defined on the basis of kinetic, thermodynamic and electrochemical phenomena
[7][8]. 

2oC  is the concentration of oxygen in the catalytic interface of the
cathode in [mol/cm3], computed on the basis of the oxygen partial pressure and
cell temperature as:

2

2 498
65.08.10

 − 
 

= O
CO

T

P

e

(5)

2.3 Ohmic Voltage drop

The ohmic drop is caused by the electrons transfer through the collecting plates
and the carbon electrodes, and by the protons transfer through the solid
membrane. It is computed as:

( )= +ohmic FC M CV i R R (6)

where RC represents the resistance to the transfer of protons through the
membrane, usually considered constant. RM is the equivalent resistance of the
membrane, calculated as:

ρ
=

AM
MR

A
(7)

where ρM is the specific resistivity of the membrane for the electron flow in
[Ωcm], A is the cell active area in [cm2] and l is the thickness of the membrane
in [cm].

Since the adopted membrane is of the Nafion type, the following expression of
the resistivity of the membrane has been used [7][8]:
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where the exponential term in the denominator takes into consideration
temperature deviation from 30°C and ψ is an adjustable parameter, depending
on the relative humidity and stochiometric relation of the anode gas, which
assumes a maximum value of 23.

2.4 Concentration Overpotential

The mass transport modifies the concentration both of oxygen and hydrogen,
which causes the reduction of the partial pressures of the gases. The reduction
of the partial pressures of gases depends on the load current and the
characteristics of the cell. To define this voltage drop term, a maximum current
density Jmax is defined, with which the cell works at the same rate of the
maximum supply speed. On this basis, the concentration overpotential can be
computed as:

max

ln 1
 

= − − 
 

con

J
V B

J
(9)

where B is a parametric coefficient, which depends on the cell, and J represents
the actual current density of the cell in [A/cm2].

2.5 Dynamics of the Cell

The dynamics of the cell is mainly governed by the so called “charge double
layer” effect. When two differently charged materials are kept in contact, either
a charge accumulation on their surfaces or a load transfer from one to another
occur. The charge layer in correspondence of the electrolyte/electrode interface
behaves as a storage of electrical charges, and therefore, from the electric
circuit point of view, can be represented by a capacitor. At each voltage
variation, a time is required for charging, in case of voltage increase, or
vanishing, in case of voltage decrease. This time delay affects the activation
and concentration overpotential, and not the ohmic drop, whose variation can
be, however, considered instantaneous.

The activation and concentration overpotentials can be modelled as first-order
delay elements with a time constant aRC=τ , where C is the equivalent
capacitance in [F] and Ra is the equivalent resistance in [Ω].
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( ) ( )1 1+
= − +

τ
act con

FC act con

d v v
i v v
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(10)

The time constant τ governing the dynamics is variable with the load
conditions, since the equivalent resistance Ra is a function of the activation and
concentration overpotentials and load current:

 +
τ = =  

 
act con

a
FC

V V
CR C

i
(11)

3. VALIDATION OF THE MODEL

As recalled above, the dynamic model proposed in [4] has been employed for
the simulations. A single PEM-FC model Ballard Mark V with a membrane
model Nafion 117, fed by gases O2 and H2, has been simulated to validate the
model. Tab. I shows all the parameters used to model the cell.

Tab I: Parameters of the Ballard Mark V Fuel Cell

Parameters Value Parameters Value

T 343 [K] ξ1 -0.948

A 50.6 [cm2] ξ2 0.00286+0.0002 ln(A)+(4.3 10-5) ln(CH2)

PH2 1 [atm] ξ3 7.6 10-5

PO2 1 [atm] ξ4 -1.93 10-4

B 0.016 [V] ψ 23

RC 0.0003 [Ω] Jmax 1.5 A/cm2

l 178 [µm] Jn 1.2 A/cm2

The cell polarization curve gives the fuel cell output voltage as a function of the
current density in steady-state. Fig. 2 shows the results obtained with the
proposed model [4] in comparison with those obtained experimentally [7][8]. It
can be observed a very good agreement of the simulated curve with the
experimental one, with a percent error in the quasi-linear zone of the
characteristics lower than 3%. Fig. 3 shows the family of control characteristics
of the Ballard Mark V, which give the voltage of the cell versus the hydrogen
partial pressure, given a constant load current of the cell. As the stoichiometric
consumption rate for the two gases is constant, the oxygen partial pressure is
considered in these curves half of the hydrogen partial pressure. Therefore in
the control systems explained in the following, only one controller has been
adopted in conjunction with two independent gains, one for hydrogen line
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actuator and the other for the oxygen line actuator. These curves have been
plotted at three values of load current for each of the three zones of the
polarization curve (low loads, quasi-linear zone, and high loads). They show
that, the higher the load current, the higher the hydrogen pressure needed to
obtain a given value of the cell voltage. Moreover, at 75 A load, in nonlinear
zone, even with the maximum allowed value of hydrogen pressure of 10 atm,
the maximum achievable voltage for each cell is only about 0.35 V.
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Fig. 2: Ballard Mark V polarization curve
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Fig. 3: Control characteristics of the Ballard Mark V in the 3 working zones

The dynamic behaviour of a cell stack of 32 series connected Ballard Mark V
has been simulated in Matlab-Simulink environment. The capacitor C has
been given the value of 3 [F] [4]. The cell has been fed with a 4 atm hydrogen
partial pressure and 2 atm oxygen partial pressure at the working temperature
of 10°C. Starting from a load current of 5 A, a step load insertion of 50 A
followed by its step rejection has been given. Fig. 4 shows the obtained
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waveforms of the cell stack voltage, power and load current. These figures
clearly show that, when the load is inserted, a reduction of the voltage occurs
with an increase of the generated power which exhibits, as confirmed in [1][4],
an overshoot during the ascending transient.
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Fig. 4: Voltage, power and load current of a fuel cell stack during load insertions and
successive reduction

4. NON-LINEARITY ANALYSIS OF POLARIZATION MANIFOLD

Here the polarization manifold is defined as the hypersurface in the four-
dimensional space given by voltage, current, H2 pressure and temperature.
Tests of nonlinearities are presented in order to determine the best possible
control design. To this aim, the neural network called Curvilinear Component
Analysis (CCA, [13]) has been used. It is a self-organizing neural network
which captures the data manifold in the original space and projects it in a
nonlinear way into a lower-dimensional space, e.g for visualization purposes.
This projection tries to respect the data interdistances: if two points in the
original space are distant of a quantity dy, their projections are distant of a
corresponding quantity dx, in such a way to be as closest as possible to dy. If
all possible interdistances dy, dx are represented in a diagram dy-dx, it is
obvious that, if the original manifold is linear, all points lie on the bisector. If
not, the points bend below it. In this sense, this diagram can be considered as a
nonlinearity test. If the polarization manifold is projected to the two-
dimensional space, data are represented by three straight lines (see Fig.5).

These lines mean that the polarization manifold is inherently unidimensional, in
the sense that it is nearly piecewise linear: the three lines correspond to
different ranges of current, i.e. low currents (less than 4 A), intermediate
currents (between 5 A and 69 A) and high currents (more than 71.5 A). If the



J. Electrical Systems 1-2 (2005): 1-18

9

polarization manifold is considered only for currents between 4 A and 5 A (first
knee in Fig.2), non-linearities appear, as can be seen in Fig.6 and 7.

Fig.5 : CCA two-dimensional projection of the polarization manifold

Fig.6: CCA two-dimensional projection of the polarization manifold for the first knee

Fig.7 : Diagram dy-dx of the CCA two-dimensional projection for the first knee.

Fig.6 shows the first knee in two-dimension and is caused, in a first
approximation, by the transition from the unidimensional space for low currents
into the one for intermediate currents. The corresponding diagram dy-dx (see
Fig.7), shows two clusters: the first is around the bisector (the quasi-linear
manifold for intermediate currents), the second on the y-axis, because CCA
here is able only to unfold one unidimensional manifold. The same
considerations can be repeated for the transition from the range of intermediate
currents into the range of high currents (second knee).

As a consequence of the above analysis, the polarization manifold is therefore
projected into the 1-dimensional space. Fig. 8 shows the corresponding diagram
dy-dx. Here the nonlinearities are more apparent: the two knees are represented
by the two clusters on the left of the bisector and by the bending data.
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Fig.8 : Diagram dy-dx of the CCA one-dimensional projection of the polarization
manifold

This nonlinear bending is even more apparent in Fig.9 which shows the
diagram dy-dx for data in the first knee.

Fig.9: Diagram dy-dx of the CCA one-dimensional projection for the first knee.

An alternative insight into the polarization manifold, justified by its piecewise
quasi-linearity, derives from the Principal Component Analysis (PCA), which
is a linear projection technique. Fig. 10 shows the 3 first components. The
resulting projection is nearly a linear two-dimensional manifold. Physical and
analytical considerations suggest that this manifold basically depends on
voltage and current and the nonlinearities are mainly limited to these quantities.

Fig.10: PCA two-dimensional projection of the polarization manifold
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5. THE NEURAL CONTROL DESIGN.

This work proposes an indirect neural control design, in which the system is
modelled (identified) by a neural approach, but the controller is conventional
[10]. The neural approach may consist of an ensemble of neural networks
which identify different operating ranges [14]. A gating self-organizing neural
network then selects the appropriate neural network (this approach is
reminiscent of the P-CMAC network which shows local features [9]).
However, considering that the basic nonlinearities depend essentially on
current,  a simple current look-up table based on currents can replace the gating
network. This look-up table identifies the 3 zones  (low currents, quasi-linear
zone and high currents) and, in a more detail, the two knees. Fig. 11 shows the
system identification architecture.

Look-up
table

MLP net. 1
MLP net. 2

MLP net. n

PH2

PH2

PH2

VFC

VFC

VFC

MLP net. 1
MLP net. 2

MLP net. n

PH2

PH2

PH2

VFC

VFC

VFC

MLP net. 1
MLP net. 2

MLP net. n

PH2

PH2

PH2

VFC

VFC

VFC

iFC

low load
 (zone 1)

high load 
(zone 3)

linear zone 
(zone 2)

Fig.11: System identification neural ensemble

Each neural network is a Multilayer Perceptron (MLP, [15]), which is a
supervised feedforward network. Its adjustable parameters are called weights
and are determined from a set of examples (training set, TS) through the
process called training. Weights are computed by the prediction error approach,
based on the minimization of a measure of closeness in terms of  a sum-of-
squares error criterion. This minimization is achieved by an iterative search
scheme called Levenberg-Marquardt [10], which is a trust-region method based
on a second-order approximation of the criterion around the current iterate
(Gauss-Newton method). The choice of the inputs (regressor vector) for each
neural network is very important. Here a Neural Network AutoRegressive
eXternal input (NNARX) model structure has been chosen [10]: the regression
vector is composed of the past n inputs and m outputs of the MLP. NNARX is
always stable even if the system is unstable, because there is a pure algebraic
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relationship between prediction and past measurements and inputs. The lag
structure (n and m) for deterministic dynamical systems (under the assumption
that the system can be represented accurately by a function that is reasonably
smooth in the regressors) can be automatically computed by using a criterion
based on the Lipschitz quotients [16], which are computed by using the input-
output pairs of the training set for each possible lag space. The resulting index
shows a knee for the optimal number of regressors. Fig.12 gives the index plot
for the fuel cell system. According to the position of the knee, 2 past inputs and
2 past outputs have been chosen for the NNARX regression vector.

Fig.12 : The index criterion evaluated for different lag spaces (here only m = n is shown)

Here an indirect control design based on the Generalized Predictive Control
(GPC, [17], [18]) is proposed. It is a criterion-based approach like the  optimal
control method (used in a neural approach in [9]), which however can have
stability problems and a time-consuming tuning [10]. The predictive controller
does not suffer from these drawbacks and is flexible and very powerful. It is
based on the minimization of the following criterion:

( ) ( ) ( ) ( )
2

1

2 2

1

ˆ, ( ) 1
= =

 = + − + + ρ ∆ + −    ∑ ∑
uN N

i N i

J t t r t i y t i u t i (11)

with respect to the Nu future control scalar inputs :

[ ]( ) ( ) ( 1)= + −… uU t u t u t N (12)

and subject to the constraint :

( ) 20,                      .∆ + = ≤ ≤ −uu t i N i N d (13)

r is the reference signal, d the system delay time, N1  the minimum prediction
horizon (here set equal to d), N2  the prediction horizon, Nu  the control horizon,
ρ the weighting factor penalizing changes in the control input (∆ is the
difference operator). ( )ˆ +y t k  represents the minimum variance k-step ahead
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predictor. For the Nonlinear Predictive Control (NPC) the predictor is given by
the successive recursion of a deterministic neural network model, as the above
cited MLP. The predictor is nonlinear in the future control inputs. The
optimization problem must be solved at each sample, resulting in a sequence of
future control inputs U(t). From this sequence, the first component u(t) is then
applied to the system. The idea of predictive control as applied to the fuel cell
is sketched in Fig.13.

+ -

PEM-FC

iFC

½

PH2

PO2

VFC
Minimization of

Σ( ) +ρΣ∆V -V PFC FC H2
* 22

VFC
*

Fig.13 : The predictive control basic idea

Minimization of criterion (11) is a very difficult task and is here achieved by an
iterative search procedure. It is based on the Broyden-Fletcher-Goldfarb-
Shanno (BFGS, [14]) algorithm which solves the Newton minimization method
by producing a positive definite approximation of the inverse of the Hessian of
the criterion (11) by employing a consecutive series of previous iterates and
corresponding gradients. It is accompanied by a line search for the computation
of the step size [14].

The NPC strategy may have several local minima and is computationally
demanding. In order to speed up the method, it can be replaced by the
Approximate Predictive Control (APC) which applies the instantaneous
linearization principle: at each sample a linear model is extracted from a neural
network model of the system and a linear controller is designed (see Fig.14).
Obviously this can be valid only around the operating point. If a set of
operating points is taken into account, a bank of controllers is necessary (gain
scheduling [14]).
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Extract
linear 
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Extract
linear 
model

Control
Design

Linearized model parameters

Fig.14 : Control based on instantaneous linearization of a neural predictor
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In APC the predictor is given by an approximate minimum variance estimator
based on instantaneous linearization of a NNARX model (here an integrated
ARX model, ARIX, is achieved). There exists a unique solution of criterion
(11) and the future control inputs can be found directly. Hence, it is faster than
NPC, but may have a limited validity in certain regimes of the operating range.

6. SIMULATION RESULTS

Both the PEM-FC model and the control system have been simulated in the
Matlab-Simulink environment. The training set for the first knee is displayed in
Fig.15 and consists of a step function for the input hydrogen partial pressure
with increments of 0.5 atm, starting from 0.5 atm up to 10 atm together with the
corresponding stack output voltage.. The ascending part has been obtained with
a load current of 3 A and the descending one with a load current of 5 A. Similar
training sets have been developed for the other zones. In particular the number
of the training sets has been chosen high in non-linear zones and small in the
linear zone.

Fig. 15:Training set for the first knee

Fig.16: Correlation tests
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For each training set a MLP has been trained for obtaining the forward model.
The architecture of the neural network consists of one hidden layer of 9 neurons
with hyperbolic tangent as activation function, and one linear output neuron.
The regression vector (NNARX), as explained above, is made up of the
voltages and pressures of the two previous time samples; the time delay is equal
to one time sample.

The training has been accomplished by the Levenberg-Marquardt method. To
validate the estimated model a test set has been created and the tests for
correlation with different combinations of past residuals (prediction errors) and
data have been performed. If the residuals are uncorrelated with all of these
combinations, it is likely that all information has been extracted from the
training set and that the model approximates the system well. Fig. 16 shows the
auto-correlation function of the residual and the cross-correlation  between the
residuals and the input. It is apparent that the neural network generalises well.
Similar analysis has been performed for all the other neural networks.

Fig.17 shows the reference and the actual stack voltage as well as the hydrogen
partial pressure with a square wave reference whose average value is 31.5 V
and the amplitude is 1.5 V with an initial  load current of 1 A and a step load
variation up to 5 A after 10 s. The NPC design parameters are:N1=d=1, N2=7,
Nu=2 and ρ=0.01. This figure shows clearly that in this nonlinear area the
control system behaves correctly. The output voltage follows the reference
predicting the future variations of the reference. At the same time the time
variations of the H2 partial pressure never exceeds the limit value of 10 atm
while remaining smooth. In the same working conditions the APC has given
bad results, because the instantaneous linearization range is all too little for
each operating point in this zone.

Fig 17: Performance of the NPC in the nonlinear zone.
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In the quasi-linear zone (zone of intermediate currents) both the NPC and the
APC have been used and compared, as shown in Figs 18-19. In this test a
square voltage reference with average value of 26.5 V and amplitude of 1.5 V
has been given. The current is maintained constant at 17.5 A. The design
parameter of both APC and NPC are the same as before, except for ρ which is
now equal to 0.03 in APC and 0.09 in NPC. This choice has been dictated by
the consideration that the worse dynamics of APC than that of NPC does not
permit a further detuning of the predictor dynamics in favour of a smoother
control signal (Fig.18). In the quasi-linear zone the NPS has a better prediction
dynamics and a smoother control signal, but on the other hand it is more time
consuming because its requires the minimization by BFGS at each sample time.

Fig 18: Performance of the APC in the quasi-linear zone

Fig 19: Performance of the APC in the quasi-linear zone
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7. CONCLUSIONS

This paper proposes a neural nonlinear control of PEM-FC by using an existing
dynamic model of the fuel cell. The control is a non-linear predictive control
whose target is to minimize the variation of the control variable, in this case the
hydrogen partial pressure. A series of voltage steps has been given as reference
to assess the goodness of the approach in all of the three areas determined by
the load current. A suitable look-up table has been used for choosing the proper
neural network to be activated for achieving the control action. Numerical
results confirm the beneficial effects of the use of this neural control technique,
since the input pressure variations are limited. It should be remarked that the
use of APC is fully justified only in the quasi-linear zone, while this is not the
case in the other areas where the instantaneous linearization is not practically
attainable.
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