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This paper focuses on the problem of chaos suppression in permanent magnet synchronous 
motors (PMSM) with uncertain parameters. Firstly, the chaotic characterizations are analyzed, 
including bifurcation diagram, chaotic attractor, Lyapunov exponents, and power spectrum. 
Then,    by using robust optimal control approach, a simple linear feedback controller is designed to 
make the system states stable. And the control gains can be obtained from a linear matrix 
inequality (LMI), which can be resolved easily via the MATLAB LMI toolbox. Based on 
Lyapunov stability theory, the stability of the proposed scheme is verified. Finally, numerical 
simulation results are given to demonstrate the effectiveness of the presented method. 
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1. Introduction 
 

Since the late 1980s, chaos has been found in all kinds of motor drive systems, such as 
induction motors, DC motors, and switched reluctance motors[1]. Chaotic behavior in 
permanent magnet DC motor was first investigated by Hemati[2]. Li[3]  identified that chaos 
was also existed in permanent magnet synchronous motor(PMSM). Without considering 
power electronic switching, a PMSM drive system can be transformed into a typical Lorenz 
system, which is well known to exhibit Hopf bifurcation and chaotic behavior. This 
behavior, which will strongly affect the performance of the PMSM drive system, is 
undesirable in many fields. Thus, chaos control in PMSM has become a very important topic 
during the last decades. 

Up to now, various methods have been investigated to stabilize the PMSM chaotic 
system, including delayed feedback control[4], passivity control[5], inverse system 
control[6], nonlinear feedback control[7], Lyapunov exponents method[8, 9], differential 
geometry method[10], and other methods. However, most of those methods are valid only 
for the system whose system parameters are precisely known. In fact, some parameters of 
PMSM chaotic system, such as resistance, inductance and flux linkage, are probably 
unknown and may change over time. Thus, adaptive control has been used to control chaos 
in PMSM[11, 12]. Wei [13] has combined passivity theory and adaptive control to achieve 
the robust stable of the system with uncertain parameters. Yu [14] has designed an adaptive 
fuzzy controller to achieve the precision position tracking control of the chaotic PMSM 
system. . Recently, several other methods have also been successfully utilized for stabilizing 
PMSM chaotic system with parametric uncertainties, such as sliding mode control[15], finite 
time control[16], impulsive control[17] and fuzzy control[18]. However, none of the 
aforementioned methods have taken into consideration of the problem of the control effort 
required to stabilize PMSM chaotic system. An effective method to deal with this problem is 
linear quadratic (LQ) optimal control, which can not only satisfy physical constraints (for 
example, the actuator will eventually saturate), but also minimize some performance 
measures simultaneously. This method was first introduced by Lenci and Rega for 
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controlling  a discontinuous chaotic system[19]. Then Lenci developed this method to 
control a continuous Helmholtz oscillator[20]. Recently, several researchers have applied 
this approach to control and synchronization of chaotic and hyperchaotic system [21-26]. To 
the best of our knowledge, the optimal control problem of chaotic system with uncertain 
parameters has not been studied yet. 

This paper presented a robust controller based on optimal control approach and LMI 
technique to improve the stable performance of PMSM chaotic system with uncertain 
parameters. The merits of the presented scheme are that not only the global stable is obtained 
but also the optimal and robust performance is achieved in the controlled PMSM chaotic 
system. The simulation results for PMSM chaotic system demonstrate the effectiveness of 
the proposed scheme. The remainder of this paper is organized as follows. Section 2 
introduces the chaos model of PMSM and gives the problem formulation for chaos control of 
PMSM. Our main results and the realization of chaos control are described in Section 3. In 
Section 4, some simulation results are provided to illustrate the effectiveness of the proposed 
method. Finally, we summarize this paper in Section 5. 

Notations: 
nR  and 

m nR ×
 denote the set of real numbers, the n-dimensional Euclidean 

space and the set of all real m n×  matrices, respectively. ⋅  denotes the Euclidean norm. 

min ( )λ ⋅ and min ( )λ ⋅  represent the minimal and maximal eigenvalues of a matrix, respectively. 
represent the trace of a matrix. The symbol 

TM and ∗ represent the transpose of a matrix M  
and the transpose elements in symmetric positions. 

n nI ×
 is an n-dimensional identity matrix. 

 

2.  Chaos in PMSM and problem formulation for chaos control 
 

2.1. Chaos in PMSM 
 

The transformed model of PMSM with the smooth air gap can be expressed as follows[3]: 

( )

d d q d

q q d q

q L

i i wi u

i i wi w u

w i w T

γ

σ

 = − + +


= − − + +


= − −

ɺ ɶ

ɺ ɶ

ɶɺ

 .                                                    (1) 

Where duɶ , quɶ , di  and qi  are the transformed stator voltage components and current 
components in the d-q frame, ω  and LTɶ  are the transformed angle speed and external load 
torque respectively, γ  and σ  are the motor parameters.  

Considering the case that, after an operation of the system, the external inputs are set to 
zero, namely, 0d q Lu u T= = =ɶɶ ɶ  , system (1) becomes an autonomous system: 

( )

d d q

q q d

q
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i i wi w
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σ
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= −
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 .                                                        (2) 

The modern nonlinear theory such as bifurcation and chaos has been used to study  the 
nonlinear characteristics of PMSM drive system in [3]. It has found that , with the operating 
parametersγ and σ falling into a certain area, PMSM will exhibit complex dynamic behavior, 
such as periodic, quasi periodic and chaotic behaviors. In order to make an overall inspection 
of dynamic behavior of the PMSM, the bifurcation diagram of the angle speed w  with 
increasing of the parameter γ  is illustrated in Fig. 1 (a).We can see that the system shows 
abundant and complex dynamical behaviors with increasing parameter γ . The typical 
chaotic attractor is shown in Fig. 1 (b) with 0d q Lu u T= = =ɶɶ ɶ , 25γ = , and 5.46σ = .  

According to chaos theory, the Lyapunov exponents and power spectrum are two 
effective methods to determine whether a continuous dynamic system is chaotic. In general, 
a three-dimensional nonlinear system has one positive Lyapunov exponents, implying that it 
is chaotic. Fig. 1 (c) and (d) show the Lyapunov exponents and power spectrum of PMSM 
chaotic system (2) with  25γ = , and 5.46σ = . When the parameters are set as obove, 
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calculated Lyapunov exponents are: 1 0.479453EL = , 2 0.024905EL = − , 

3 7.914548EL = − ,and the Lyapunov dimension is 2.057432LD = , which means the system 
is chaotic. 
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Fig. 1 Bifurcation deagram and the Characterizations of chaos in PMSM  (a) Bifurcation 

diagram of state variable ω  with the parameter γ  (b) typical chaotic attractor  (c) Lyapunov 

exponents (d) power spectrum of state variable ω  

 

2.2 Problem formulation 

 

Considering system uncertainties and adding the control inputs, system (2) can be 

described as:  

1

2( )

( )( )

d d q

q q d

q

i i wi u

i i wi w u

w i w

γ

σ

γ

σ

 = − + +


= − − + + ∆ +


= + ∆ −

ɺ

ɺ

ɺ

 .                  (3) 

Where γ∆  and σ∆ represent the uncertainty of γ and σ respectively and the upper bound 

of γ∆  and σ∆  are known, 1u  and 2u  are control inputs.  

Following an actual operation, this article assumes that the fluctuation range of system 

parameters is 30%, that is, 1 0.3γ δ γ∆ ≤ ≤ , 2 0.3σ δ σ∆ ≤ ≤ .  

System (2) indicates three equilibrium points: 0 (0,0,0)S , 1( 1, 1, 1)S γ γ γ− − − , and 

2 ( 1, 1, 1)S γ γ γ− − − − − . Given that 20γ = , 0S  is locally stable, and 1S  and 2S are 

both locally unstable
[3]

. Without loss of generality, we select the origin 0 (0,0,0)S  as the 

desired equilibrium point.  The other non-zero equilibrium points 1S  and 2S  can be 

translated into 0S  by a simple coordinate transformation. 

In order to design the controller, system (3) can be rewritten in compact form as: 

0( ) ( )x A A x g x Bu= + ∆ + +ɺ  .                  (4) 
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Where 1 2 3( , , ) ( , , )T T

d qx x x x i i ω= = , 0
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, 1 2( , )T
u u u= . 

Associated with system (4) is a quadractic performance index 

0
( ( ), ( )) ( ( ) ( ) ( ) ( ))J x t u t x t Qx t u r Ru t dt

∞
= +∫  .                  (5) 

Where Q and R are the given positive definite sys-metric matrices.  

The objective of robust optimal control is to find an linear feedback controller u that 

drives the system(4) from any initial state to desired fixed point 0S  with minimizing the 

performance index (5). 

 

3. Main results 

 

Considering the following affine nonlinear system with the similar structure to system (4): 

0( ) ( ) ( ) ( ) ( )x t A A x t g x Bu t= + ∆ + +ɺ , 0(0)x x= .                  (6) 

Where ( ) n
x t R∈  and ( ) m

u t R∈  are the state vector and control input vector, 

respectively, 0

n n
A R

×∈  and 
n m

B R
×∈  are two constant matrices, m n≤ ， ( )g x  is the 

nonlinear term, A∆  is the admissible parameter uncertainty , 0x  is the initial condition, and 

the following conditions are assumed. 

Assumption 1: (uncertain condition) The admissible parameter uncertainty A∆  satisfies: 

( )A DF t E∆ = .                         (7) 

 

where D and E are two constant matrices and F(t) satisfies 

( ) ( ) ,T
F t F t I t≤ ∀ .                         (8) 

Assumption 2: (nonlinear condition) The nonlinear term satisfies: 

0

( )
lim 0
x

g x

x→
=  and 0( ) | 0xg x = = .                         (9) 

Infact, most of the chaotic system can be described as the form of system (6), such as 

Chen, Liu, Lü, Lorenz chaotic systems and some hyperchaotic systems composed of those 

chaotic system via linear or nonlinear feedback control. 

Next, we present several important results for robust optimial stable control for system 

(6).  

Definition ([27]). Consider the uncertain dynamic system (6). Suppose that there exist a 

control law 
1( ) ( ) ( )T

u t Kx t R B Px t
−= − = − .                         (10) 

and a positive real number J* such that for all admissible uncertainties, the closed system (6) 

is stable and the corresponding performance index (5) satisfies * (0) (0)T
J J x Px≤ = . Then, 

the system (6) is said to be robust optimal un+der control low (10). J* is said to be a 

guaranteed cost, and u(t) is said to be a guaranteed cost control law. 
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Theorem 1 Consider the uncertain chaotic system (6) with the performance index (5). If 

there exist a positive definite matrix P=PT for all uncertainties holds 

0 0( ) ( ) 0T T
A A BK P P A A BK Q K RK M+ ∆ − + + ∆ − + + + < .      (11) 

Where M is a positive definite sys-metric matrices .Then, the closed system is robust 

optimal with control law (10) and the optimal performance index (5) is 

* (0) (0)T
J J x Px≤ = . 

Proof.Consider the Lyapunov function candidate 
T

V x Px= , then the time derivative of V 

along the trajectory of (6) is .. .
T TV x Px x P x= +  

  0 0[( ) ( )] [( ) ( )]T T
A A BK x g x Px x P A A BK x g x= + ∆ − + + + ∆ − +  

  0 0[( ) ( )] 2 ( )T T T
x A A BK P P A A BK x x Pg x= + ∆ − + + ∆ − +  

1[ ]T T
x Q K RK x V< − − −                                              (12) 

Where 1 2 ( )T T
V x Mx x Pg x= − . 

Note the nonlinear condition 
0

( )
lim 0
x

g x

x→
= , that is, for ξ∀ , 0δ∃ > , if x δ≤ , 

( )g x

x
ξ< . Namely, ( )g x xξ< . 

2

max2 ( ) 2 ( ) 2 ( ) 2 ( ) ( )T T Tx Pg x x P g x x PPx g x P x g xλ≤ = ≤  
2

min ( )T
x Mx M xλ≤  

So if x δ≤ , 
22

1 min min2 ( ) ( ( ) 2 ( )T T
V x Mx x Pg x M P xλ ξ λ= − < − − . 

Because min ( )Mλ and 
2

min ( )Pλ are both known number, so if min

2

min

( )

( )

M

P

λ
ξ

λ
< , 1 0V < . 

Thus,  
.

[ ] 0T T
V x Q K RK x< − − < .      (13) 

 

Next, we verify the optimal cost index * (0) (0)T
J J x Px≤ = . 

By integrating both sides of (15) from 0 to ∞ and noting that ( ( )) 0V x t →  when 0t → , 

we have * (0) (0)T
J J x Px≤ = . 

This completes the proof of Theorem 1. 

Remark 1: Theorem 1 gives a sufficient condition for system (6). It should be noted that, 

the unknown parameters ∆A is not limited to the assumption of (7), but for all uncertainties 

for matrix A0 . 

Remark 2: Theorem 2 gives a sufficient condition for system (6) and the limitation of 

unknown parameters ∆A in (7). 

Theorem 2 Consider the uncertain nonlinear system (6) with the performance index (5). 

If there exist the positive definite matrix 
1TX X P−= =  and positive constant number ε such 

that the following matrix inequality holds 
1

0 0

1
0

( )

T T

T T

A X XA DD BR B X

X Q M E E

ε

ε

−

−

 + + −
< 

− + + 
.      (14) 

Then, the closed system is robust optimal under control law (10), and the optimal 

performance index is * (0) (0)T
J J x Px≤ = . 

Proof. Substituting
1TX X P−= = into (14), then using Schur complement, we can get 

that 
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1 1

0 0 0T T T T
A P PA PBR B P PDD P E E Q Mε ε− −+ − + + + + < .      (15) 

Consider the Lyapunov function candidate 
T

V x Px= , then the time derivative of V along 

the trajectory of (6) is 
.. .
T TV x Px x P x= + 0 0[( ) ( )] [( ) ( )]T T

A A BK x g x Px x P A A BK x g x= + ∆ − + + + ∆ − +  

Note that 

( ( ) ) ( )T T
A P P A DF t E P PDF t E∆ + ∆ = +            

          
1( )( ) ( ( ) ) ( ( ) )T T

PD PD F t E F t Eε ε −≤ +  

          
1T TPDD P E Eε ε −= +  

So 
.

1 1

0 0[ 2 ] 2 ( )T T T T T TV x A P PA PBR B P PDD P E E x x Pg xε ε− −≤ + − + + +  

  [ ] 2 ( )T T T
x Q K RK M x x Pg x= − − − +  

  1[ ]T T
x Q K RK x V< − − −                                                (16) 

We can see that (16) is similar to (12), so the following process is omitted here. 

Remark 3: Theorem 2 gives a sufficient condition for system (6) with the limitation of (5) 

in the form of LMI. It translates the problem of stability into the feasibility of the LMI, 

which can be solved by using the feasp command in the LMI toolbox within the MATLAB 

environment. Once a solution of the LMI is feasible, the robust optimal control law, that 

ensures the quadratic stability of the closed system (6), can be contracted readily. 

 

4. Simulation results 

In this section, the fourth-order Runge–Kutta method is used to solve PMSM chaotic 

system (4) with time step size 0.001 in all numerical simulations. The system parameters 

γ=25 and σ=5.46. Choose the initial conditions of the system 

1 2 3( (0), (0), (0)) (0.01,0.01,0.01)x x x = .  

First， we have to verify that the uncertain condition and nonlinear condition are both 

holded for system (4). 

2 2 2 2 2 2 2 2

2 3 1 3 2 3 1 3 2 2

3 3
2 2 2 20 0 0 0
1 2 3 1

( )
lim lim lim lim 0
x e x x

x x x x x x x xg x
x x

x x x x x→ → → →

+ +
= ≤ = + =

+ +
 and 

0( ) | 0xg x = = .  

( )A DF t E∆ = , ( ) ( (1), (1), (1))F t diag rand rand rand= , 

0 0 0

0 0

0

E γ

σ σ

 
 =  
 − 

, 

(0,0.3,0.3)D diag= .Thus, we can design the controller according to Theory 3.  

The control parameters 0.1ε = ,
2 2R I ×= , 

3 3
Q M I

×= = . The control method takes effect 

after t=25 s. 

1) Without considering uncertain parameters, that is 0A∆ = , according to Theorem 2, we 

can get: 

0.0006 0 0

0 0.0747 0.2174

0 0.2174 1.0175

X

 
 =  
  

, 
0.6488 0 0

0 74.7336 217.3513
K

 
=  
 

 

and the optimal cost index is * 0.1528J = . 
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The state trajectories and control inputs for the controlled PMSM chaotic system 

disregarding the unknown parameters are shown in Fig. 2. 

2) The uncertain parameters are assumed as the same as (7), according to Theorem 3, we 

can see the following result which satisfied LMI (13): 

0.8614 0 0

0 0.0350 0.0071

0 0.0071 0.0024

X

 
 = − 
 − 

, 
1.610 0 0

0 68.3730 197.4428
K

 
=  
 

 

and the optimal cost index is * 0.1444J = . 

Fig. 3 demonstrates the simulation results of the proposed controller for PMSM chaotic 

system with known parameters. 
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Fig. 2 The performance of the system with the proposed controller (without considering 

uncertain parameters)  (a) State trajectories (b) Control inputs 
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Fig. 3 The performance of the system with the proposed controller (considering uncertain 

parameters)  (a) State trajectories (b) Control inputs 

 
We can see from Fig. 2 and Fig. 3 that the closed system (considering the uncertain 

parameters or not) is both stabilized to their diresed equilibrium point quickly, and the 
control inputs are continuous and smooth. From the simulation results, is shows that the 
obtained theoretic results are feasible and efficient for controlling PMSM chaotic system 
with unknown parameters.  
 

5. Conclusion 
In this paper, a novel robust optimal control method is developed for a PMSM chaotic 

system. Compared with other controllers, the one presented in this paper have some 
advantages such as simple structure, strong robustness and the control gains can be obtained 
easily based on LMI technique. The effectiveness of this proposed control method has been 
validated by numerical simulation in Section 4. Moreover, this method is a unified control 
scheme for a class of chaotic and hyper-chaotic systems, such as Lorenz, Chen, Lü, Liu 
chaotic systems and some hyper-chaotic systems constructed from them. 
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