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The stable positive DC corona discharge in atmospheric air under a wire-to-cylinder system is 
analyzed in this paper. An iterative finite element technique is developed to obtain a general 
solution of the governing equations of the coupled space-charge and electric field problem. The 
technique is to use the finite-element method (FEM) to solve Poisson's equation and the method 
of characteristics (MOC) to find the charge density from a current-continuity relation. Besides, 
the corona ionized field is successfully modeled using COMSOL MULTIPHYSICS 3.4. Two 
application modes are used to solve system of coupled equations with appropriate boundary 
conditions: PDE (General Form) mode for electric potential distribution and Convection and 
Diffusion mode for charge transport equation. In order to validate the presented numerical 
methods a comparison with analytical solution and measured data are made. The obtained 
results are in good agreement. 
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1. Introduction 

 

Corona discharge is currently used in various ways in an increasing number of industrial 

and technological applications, such as electrostatic precipitator (ESP) and separators, 

ozonizers, painting and spraying powders, etc. Moreover, it has been the subject of many 

theoretical, experimental and numerical studies in diverse gaps configurations [1-16]. In 

this paper, we are interested about the numerical modeling of a coaxial ESP for which the 

configuration is symmetric with stable corona discharge. 

The principle of electrostatic precipitator that use corona discharge phenomenon can be 

described as following. A high intensity electric field is applied between a high tip 

curvature corona electrode (wire) and a low tip curvature collector electrode (cylinder) 

provides condition for ionization of gas molecules in the nearest vicinity of corona 

electrode surface. The inter-electrode space is divided in two distinct regions; a high-field 

ionization region surrounded the active electrode where free charges are produced, and a 

low-field drift region occupying the remainder of the interval. In the case of positive 

corona, the electrons move toward corona electrode and are neutralized whereas positive 

ions are pushed by the electric field away from it and drift to the passive collector electrode 

forming a space charge which modifies the original Laplacian applied electric field. 

Despite advances in numerical and computational techniques, accurate solutions of the 

field equations are very difficult to obtain because of the distortion of the electric field due 

to the presence of the space charge. Several numerical techniques have therefore been 

employed to solve the problem using the charge simulation method [1-2], the finite 

difference method [3] and the finite element method [4-8], often combined with the method 

of characteristics [7,9-11] to evaluate the space charge density. The study of a symmetric 
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coaxial system for which an analytic solution is available will allow to modeling other 

complex geometries.  

 

2. Mathematical model 

 
In the air, the mathematical description of the monopolar ionized field is giving by this 

set of equations: 

Poisson’s equation: 

 

0.  E ρ ε∇ =
�

     
                               (1) 

Equation for current density: 

 

ρρµ ∇−= ... DEJ
��

     
                       (2) 

Equation for current continuity: 

 

0. =∇ J
�

                                         (3) 

Equation relating the field to the potential: 

 

Φ−∇=E                                                               (4) 

Where E
��

is the electric field, φ the electric potential, J
��

the current density vector, ρ the 

ionic charge density, ε0 the air permittivity, µ the ionic mobility, and D the diffusion 

coefficient.  

Because of its nonlinear character, equations (1)-(4) cannot be solved analytically except 

for very simple geometries (infinite parallel plates, concentric spheres, etc.). Therefore, all 

numeric methods proposed in the literature to resolve the corona problem in practical line 

geometries have resorted to some simplifying assumptions [4-8], where the most common 

ones are:     

- The thickness of the active ionization layer around the wire is so small as to be 

neglected with respect to the inter-electrode spacing [10]. 

- The average mobility µ  of positive ions is assumed constant (independent of 

electric field intensity) during the transit time from the ionization region to the 

collecting electrode [12-14].  

- For applied voltages above corona onset level, the field on the wire surface remains 

constant at the threshold field Ei, independently of the corona intensity (Kaptzov’s 

assumption) [15]. 

- Diffusion of ions is neglected in comparison with migration [10]. 

Solution of the equations (1)-(4) should be supplemented with these proper boundary 

conditions:  

- The potential on the coronating wire is equal to the applied voltage (φw = Va). 

- The potential on the grounded electrode (cylinder) is zero (φC = 0); 
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- The magnitude of the electric field at the surface of the coronating wire remains 

constant at the threshold field Ei. This value, often given by the empirical Peek’s law 

[15], is replaced in the present paper by the generalized Peek’s law developed in [12]. 

The threshold field Ei normalized at the related air density is expressed by this analytic 

equation [14]: 

 

( , , ) (1,0) ( , , )
i a c a

E R H E F H Rδ δ δ= × ×
                                                                   

(5) 

 

Where Ec(1,0) = 2.468×10
6
 V/m is the minimum ionization field corresponding to 

the effective ionization coefficient α–η = 0. F(Ha,δ, R) is a function depending on the 

radius R of the wire, on the absolute humidity Ha and on the related air density δ. 

This boundary condition is satisfied by adjusting iteratively the charge density ρw on 

the wire surface until the electric field at the wire agrees with the threshold field value 

[4].    

 

3. Proposed method of analysis 
 

In the present investigation, the wire cylinder system is supposed to be of infinite length 

and consequently the system is reduced to a two-dimensional (2D) system. A wire of radius 

RW forms the anode and a cylinder of radius RC forms the cathode as indicated in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. DC corona structure representation in coaxial system 

Corona governing equations, seen previously, clearly indicate the physical interactions 

between electric field E and space charge density ρ. The process of numerical calculations 

is therefore, iterative by nature. In the calculation process proposed, unknown space 

functions, i.e. electric potential and positive ion density were evaluated alternatively, from 

the coupled differential equations, assuming that the second quantity was known from the 
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previous iteration steps. A first order triangular finite element with a constant ionic charge 

density in each element is adopted. 

 

3.1 Resolution of Poisson’s equation 

The finite element method approximates the potential within each element as a linear 

function of coordinates: 

 

( ),
e e e e

x y a b x c yφ = + +                          (6) 

For known values of ρ at nodes, Poisson’s equation (1) is solved by minimizing an 

energy functional with respect to each nodal potential value. This minimization leads to a 

set of simultaneous equations for values of φ at nodes. The electric field within any 

particular element is constant and given by:  

 
e e

x yE b i c i= − −
�� �� ��

                            (7) 

 

3.2 Evaluation of the space charge density 

The space charge distribution in the computational domain is obtained by applying the 

method of characteristics (MOC) to solve the continuity equation (3), where ion diffusion is 

neglected. This method introduces the time as a new variable to evaluate the space charge 

density along field lines [10]. 

Under the effect of the electric field, the positive ions acquire the speed:   

 

v Eµ=
� ��

                                (8) 

Ion trajectories are then defined by: 

 

.
dr

E
dt

µ=

�

�

                               (9) 

Where r is the rectilinear coordinate measured along the field line.  

 

Combining the equations (1)-(3), one obtains a non linear partial differential equation 

governing the evolution of the space charge density: 
 

2

0

.E
ρ

ρ
ε

∇ = −
� �

                           (10) 

Equation (10) can be written, along the characteristic field line, as:   

 
2

0

d

dt

ρ ρ
µ

ε
= −                                              (11) 

This equation yields an analytical solution of the following form: 
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                        (12) 

where ρ0 is the charge density at the starting point of the characteristic line.     

 

Ion trajectories in the coaxial configuration are straights and radial to the wire. So, given 

the known electric field on each grid node, equation (9) is used to determine the time-step 

∆t corresponding to an increment distance ∆r along the field line. The value of time is then 

replaced in equation (12) to find the space charge density.    

4. Procedure of resolution 

 

The method of analysis is described in the following steps: 

 

- Step (1): Orthogonal grid generation: The area is divided in to triangular elements 

forming a grid which is generated by the intersection of Nr equally spaced radial lines 

with Nc concentric circular contours. The points of intersection represent the grid nodes 

and the simple triangular finite elements are obtained by subdividing each quadrangle 

into two triangles [11]. The radial distance between nodes is small near the coronating 

conductor and increases in the direction towards the outer conductor. 

 

- Step (2): Solve for φ via the finite element method the Laplace's equation (∇2φ  = 

0) assuming ρ= 0 in the entire domain.  

 

- Step (3): Make an initial guess for ρw, the space charge density on the wire surface. 

 

- Step (4): Calculate the electric field distribution from the potential interpolation. 

 

- Step (5): Apply the MOC to obtain the charge density at grid nodes.  

 

- Step (6): Using FEM, solve for the potential φ the Poisson's equation with the new 

charge density.  

 

- Step (7): Repeat steps (4)-(6) until the maximum mismatch between the two last 

estimates of the potential at the grid nodes is less than a pre-specified error δ1. 

 

- Step (8): Calculate the electric field magnitude at the wire’s surface and compare it 

to the threshold field value, Ei.  

- If sufficiently close (with respect to a pre-specified error δ2), stop.  

-  Else, correct the space charge density ρw at the wire and return to step (4).  

We summarize in Figure 2 the flowchart of the FEM-MOC simulation program.  

5. Results and discussion 

The described method was tested through its application to a 30 kV ESP laboratory 

model, for which experimental results are available [14]. The computational model consists 

of a wire of radius RW=0.9875 mm and a cylinder of radius RC = 50 mm for which the 
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corona threshold field value Ei is evaluated at 6.06 MV/m and the corona onset voltage Vons 

is 23.48 kV. The ionic mobility is µ= 2.15 10
-4

 m
2
/Vs and the errors δ1 (on electric 

potential) and δ2 (on electric field) were taken 1 %.  

An example of the finite-element mesh that covers the area of interest around the 

coronating wire is shown in Figure 3. In the area close to the corona wire, where high 

gradient is expected, the mesh has a high concentration while elsewhere the elements can 

be larger. The generated mesh is formed by 950 triangular elements and 500 nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Chart flow of the numerical procedure 
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Figure 3. Generated grid for a wire-cylinder system 

5.1 Current– voltage characteristics 

A corona discharge can be characterized globally by the current-voltage curve which 

relates the current collected by the outer cylinder to the voltage applied to the wire. The 

corona current can be computed by integrating the current density over the round cylinder 

(or wire) surface. At a given value of the applied voltage Va, the current I per unit length is 

given by : 

 

. 2 ( . )w w w

S

I J dS R Eπ µ ρ= = ×∫∫                                                                    (13) 

where ρw and Ew are the charge density and the electric field values at the corona wire 

respectively. 

Figure 4 shows the current-voltage characteristic curves for the investigated coaxial 

system configuration. The current is negligible until voltage is equal to the onset value. 

Starting from that point, the current increases rapidly with the applied voltage. As can be 

seen, the characteristics predicted by both FEM-MOC technique and Comsol model are 

very close and agree well with the measured curve giving by [14]. 



J. Electrical Systems 11-4 (2015): 384-396 
 

 391

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Current-Voltage characteristics for the investigated coaxial system 

5.2 Space charge effect on electric field distribution 

The calculated Poissonian and Laplacian electric field distributions along the radial 

direction are shown in Figure 5. The Poissonian field in the ionization region is lower and 

remains constant at the wire surface as it results from Peek's assumption. On the other hand, 

the concentration of positive ions near the ground cylinder increases the total electric field 

with regard to Laplacian free-field. It is clear that the presence of space charge in the gap 

has a significant effect on the electric field, consistent with previous studies [11,14].  
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Figure 5. Poissonian and Laplacian electric field distributions along the radial direction 

 

5.3 Electric field, electric potential and space charge distributions 

The computational distributions of the electric field, the electric potential and the space 

charge density along the radial direction are shown in Figures 6, 7 and 8 respectively, and 

compared with the semi-empirical solution given by [4,14]. It can be seen that the electric 

field intensity around the corona wire is very strong and declines according to a 1/r law 

near the ionization region.  For a high value of r, the electric field decreases slightly and 

becomes constant when r is close to RC. Similarly, the electric potential is very important in 

the ionization region where it takes the maximum value of Va, the applied voltage, at r = 

Rw, becomes low away from the wire and reaches zero at the cylinder surface, as the 

cylinder is grounded. The space charge is also distributed with highest density near the wire 

and decreasing away from it. In all cases, the calculated values predicted by the two 

presented models (FEM-MOC technique and Comsol simulation) are in good agreement 

with those given by the analytic solution. 

Comsol Multiphysics software has the ability to represent the calculated results in 

several graphical presentations, among others, the presentation with colors [17]. Figures 9 

to 11 show the two-dimensional computed distributions of the electric field, the electric 

potential and the space charge density, respectively, together with the coordinate directions 

where the centre of the corona wire is taken as the origin. As previously seen, the corona 

discharge parameters have high values at the wire surface and low values at the grounded 

cylinder. The magnitudes of calculated values are demonstrated by scale of colors. Also, a 

number of field lines and equipotential contours are traced in white in Figure 09 and Figure 

10, respectively. It is seen that the field lines are straight and radial and the potential 

contours are concentric circles around the corona wire due to the revolution symmetry of 

the system. 
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Figure 6. Electric field distribution along the radial direction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Electric potential distribution along the radial direction 
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Figure 8. Space charge density distribution along the radial direction 

 

 

Figure 9. 2D electric field distribution in the computed domain 
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Figure 10. 2D electric potential distribution in the computed domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. 2D space-charge density distribution in the computed domain 
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6. Conclusion 

The present study has developed an efficient iterative method for the solution of the 

ionized field problem during the positive DC corona discharge in coaxial system. 

Thereafter, the corona governing equations are implemented and solved effectively using 

COMSOL Multiphysics software. Predictions of both numerical models are with good 

agreement with the analytic solution and the experimental data. The Comsol program is 

fairly simple and very quickly with high precision. The successful application of Comsol 

Multiphysics to simulate the corona discharge  in a coaxial geometry have recently allowed 

us to model more complex geometries, such as a wire-plate and a multi-wires-plate 

configurations. Other electrode systems are being investigated.   
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