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In this paper, a linear electromagnetic actuator with moving parts is analyzed. The 
movement is considered through the modification of boundary conditions only using 
coupled analytical and finite element analysis. In order to evaluate the dynamic 
performance of the device, the coupling between electric, magnetic and mechanical 
phenomena is established. The displacement of the moving parts and the inductor
current are determined when the device is supplied by capacitor discharge voltage. 
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1. INTRODUCTION 

In electromagnetic devices, the electromagnetic field can be obtained by 
solving partial differential equations. The solution of these equations can be 
done through numerical methods such as finite element one [1]-[2]. 
Nevertheless in the case of dynamic studies of these devices, this method fail 
due to the flexion and the deformation of the solution domain subdivision when 
the mobile parts are moved. To solve this problem, generally a new mesh at 
each displacement step is required, and in this case, this method becomes 
cumbersome and very expensive. Several formulations are developed in order 
to take account of the movement in mobile systems such as the electric 
machines, the actuators, the induction heating systems, etc...  

Generally, the existing formulations, allowing the movement simulation, 
make use of special elements or meshing modifications and lead to costly 
models [1]-[2]. An other approach is used for movement consideration in linear 
electromagnetic systems. This approach is based on only one finite element 
meshing for all the displacement steps as described in [3]. The major defect of 
this technique is the fact to simulate the movement to discontinuous steps. This 
led to numerical noises in calculation if finite element mesh is not well refined 
on the level of the movement zone. 
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To overcome this problem, a coupled model based an analytical and finite 
element solution is proposed in this paper. In this model, the movement is taken 
account through the modification of boundary conditions only. The analytical 
solution is determined in a simple shape region considered between a moving 
part and a fixed one, and called «MZ : Movement Zone». The rest of the 
domain is finite element meshed. The analytical solution is coupled to the 
numerical one through the continuity condition for the field tangential 
component (Ht). The movement is then considered by only the modification of 
the points coordinates of the interface between both analytical and numerical 
sub-domains. In this way, the matrix due to the finite element discretization is 
calculated once and used for every relative position of the moving part. The 
formulation is elaborated in the case of an axisymmetrical structure and its 
validity is achieved when applying it to study an electromagnetic actuator. 

In the other hand, the main design factors of the actuator : the displacement 
of the moving parts and the electrical current in the coil, are determined by the 
coupling between electric, magnetic and mechanical phenomena [4]-[7]. The 
problem is investigated by the parameterization coupling model. Measurements 
are carried out and compared to computed data when the device is supplied by 
capacitor discharge voltage. 

2. FIELD EQUATIONS AND FORMULATION 

Let consider an axisymmetrical electromagnetic system (Fig. 1). The load is 
a body which moves under the effect of the electromagnetic forces. 

 z (Symmetric axis)
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Coil
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2AA =ϕ
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r
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Fig. 1. Electromagnetic system objects. Note that : FEDA is the Finite Element 

Discretized Area and MZ is the Movement Zone. 

In this case, the magnetic vector potential equations are as follows [3]: 
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Aϕ  and J  are the components following the angular direction ( ϕ ). V : 

electrical potential, v : velocity, σ : electric conductivity, ν : magnetic 
reluctivity, 0μ : vacuum permeability. 

In MZ zone (Fig. 1), equation (1) becomes : 

( ) ( ) ( ) ( ) ( ) ( )1 . 1 0r r rA r z r rA zϕ ϕ⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ =⎣ ⎦ ⎣ ⎦    (3) 

The variables separation technique is applied to solve (3). When considering 
the following axisymmetrical conditions : 

( ) ( )
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the solution of this equation using Bessels functions is given as follows : 
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with ( )( )2 1j k bλ = − + π . 1J  is Bessel’s function of first order and first 
kind. 

In order to couple the analytical solution to the finite element analysis, one 
has to put the continuity condition in term of tangential component ( )tH  of the 
magnetic field : 

( ).tH r rA n⎡ ⎤⎛ ⎞= ν ∂ ∂⎜ ⎟⎢ ⎥ϕ⎝ ⎠⎣ ⎦
             (6) 

To determine tH , we calculate the derivation respect to the normal n : 



J. Electrical Systems 1-3 (2005): 24-31 
 

 27 

( ) ( ) ( )
( )( ) ( ) ( ) ( )( ){

( )( ) ( )( ) }
( )( ) ( ) ( )( )( ){

( )( ) ( )( )( ) }

1
0

0 1 0

1
0

1 1 0

4. 1 2 1 cos 2 1

. . . .

4. 1 sin 2 1

. .

r z

k

k

r

k

k

z

r A n A r A r n r A z n

A k k b z

r J r J r a n

A b k b z

J r J r a n

ϕ ϕ ϕ ϕ

∞

=

∞

=

⎡ ⎤ ⎡ ⎤∂ ∂ = + ∂ ∂ + ∂ ∂⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − + π + π⎣ ⎦⎣ ⎦

⎡ ⎤λ λ + λ⎡ ⎤⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − − + π⎣ ⎦⎣ ⎦

⎡ ⎤λ + λ⎣ ⎦

∑

∑

  (7) 

Where ( ) ( ) ( ) ( )( )2 2
0

0
1 2 !m m

m

J r r m
∞

=

⎡ ⎤ ⎡ ⎤λ = − λ⎣ ⎦ ⎣ ⎦∑  is the Bessel’s function of 

zero order. rn  and zn  are the normal vector n  components in the ( , )r z  plane. 

In the finite element discretized area (FEDA), the Galerkin formulation of 
equation (1) is given by the following relation: 
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∫∫
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     (8) 

where α is the projection function, Ω is the FEDA and Γ is the interface 
between the  FEDA and the MZ. So, the integral term considered on Γ can be 
expressed using the field tH     formulae (6). 

When the load moves respect to the inductor, only the MZ formulae (6) has 
to be changed through the modification of the coordinates r and z. It can be 
noticed that the MZ formulae can be associated to standard software since it 
can be put as Newmann boundary condition. 

ELECTROMACHANICAL COUPLING MODEL 

The dynamical behavior of linear electromagnetic actuator can be basically 
described by the following electromechanical equations system [6]-[7] : 
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where ( )V t  is the exciting voltage applied to the coil, R  is the coil resistance, 

i  is the coil current, N  is the number of turns, ( ),z iφ  is the flux through the 

coil, z  is the displacement, t  is the time, ( ),L z i  is the inductance, ( ),magF z i  

is the global magnetic force, M  is the mobile part mass, α is the friction 
coefficient, gF  is the force of gravity and v  is the mobile part velocity.  

The unknown variables of the electromechanical problem are the current (i) 
and the mechanical displacement (z ). The method consists of simultaneously 
solving the equations system (1); that requires the knowledge of magnetic force 
( magF ) and flux ( φ ) which are functions of the displacement and the current. 

These variables ( magF , φ ) are parameterized using interpolation functions and 
finite element solution for the electromagnetic equation. This solution is carried 
out for series of discrete values of the excitation J and the displacement z in the 
ranges of their real variations. The displacement of the moving part is 
considered by only the modification of the points coordinates of the interface 
between both analytical and numerical sub-domains. In this way, the matrix due 
to the finite element discretization is calculated once and used for every relative 
position of the moving part. 

APPLICATION AND RESULTS 

Figure 2 describes the test problem. This is an axisymmetrical actuator used 
to produce strike forces. It is composed by too coils and a cylindrical steel 
armature moving following -z- axis when a voltage stem from a capacitor 
discharge is applied to coil 1 or coil 2.  

The characteristics of the system are : 5.52 ,M kg= 34.35.10−ν = (the 

relative reluctivity of the armature), 60.715.10 /S mσ =  (armature), 
1 3.21 ,R = Ω  2 1.22R = Ω and 138.98 . / .N s mλ =  

Figure 3, 4, 5 and 6 show respectively the supplying voltage, the electrical 
current in the coil, the mechanical displacement of the armature and the 
velocity as functions of time. Note that, the coil 1 is excited  from t = 0 s  to  t = 
0.03 s, after  that, the coil 2 will be excited from  t = 0.072 s to  t = 0.125 s. 
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In figure 4, the coupling model is compared to the experimental data. One 
observes that in this figure, the current in coil 1 reaches it’s maximum in 
advance of 62.4 ms then that of the mechanical displacement (Fig. 5). The 
electromagnetic system is more rapid then the mechanical one.  

Figure 6 shows the velocity as a function of time. One observes that, the 
moving part (armature) arrived at its initial position with a velocity of 

2.3 / ,v m s≈ that corresponds to kinetics energy of 14.6 .W J≈   

On the other hand, the electrical conductivity (σ) of the moving part is weak, 
which permits to neglect the eddy currents in the conductor and allowing the 
use of the parameterization method.  

The computed results based on coupled analytical and finite element analysis 
for linear electromagnetic actuator having moving parts are in good agreement 
with the experimental ones (Fig. 4). The difference between measured and 
calculated values is essentially due to the approximation of the actuator 
physical properties. 
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Fig. 2.  The axisymmetrical representation of the electromagnetic actuator. Note that : V1 and V2 are 
the supplying voltages. z is the direction of the mechanical displacement of  the moving part 
(armature). 
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Fig. 3. Supplying voltage as a function of time. 
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Fig. 4.  Supplying current as a function of time. 
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Fig. 5.  Mechanical displacement as a function of time. 
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Fig. 6.  Velocity as a function of time. 

CONCLUSION 

The proposed method is elaborated for the modeling of the electromagnetic 
systems having variable configurations in time. The movement simulation is 
carried out through the modification of the interface continuity conditions only. 
Such conditions are obtained from analytical solution, leading to an accurate 
and economic modeling. 
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