
Corresponding author: O. Bouketir
Faculty Of Engineering (FOE)
Multimedia University
Malaysia

Copyright © JES 2005 on-line : www.joes.org.uk

O. Bouketir
N. Mariun
I. Bin Aris
S. M. Bashi
S. Taib

J. Electrical Systems 1-2 (2005): 35-62

Regular paper

A Learning Aid Tool for Power
Electronics Converters

JES

Journal of
Electrical
Systems

It is known that power electronics and its related subjects are not easy to
understand for students taking them for first time. This is due to nature of the
subjects which involve many areas and disciplines. The introduction of general-
purpose simulation package has helped the student a step further in understanding
this subject. However, because of the generality of these tools and their drag-and-
drop and ad-hoc features, the students still face problems in designing a converter
circuit. In this paper, the problem above is addressed by introducing a learning aid
tool that guides the student over prescribed steps to design a power electronics
circuit. The tool is knowledge-based system where its knowledge base encompasses
two types of knowledge; topologies and switching devices. The first step in the
design procedure is the selection of the application of the desired circuit. Then few
steps are to be followed to come out with the appropriate topology with the
optimum switching devices and parameters. System structure, its different modules
and the detailed design procedure are explained in this paper

Keywords: Class, converter, database, inference engine, knowledge base, OOP,
switching device.

1. INTRODUCTION

Numerous research works have been conducted to come out with a CAD tool
for power electronics converters. However, none of these works aimed to
develop a fully-automated tool, nor claimed its complete success for the partial
task assigned for (1-7). In the present tool; power electronic design aid system
(PEDAS) a different approach is introduced to overcome the deficiencies
mentioned above in order to come out with a fully-automated tool specifically
for designing power electronics converters. Though, the tool is interfaced with
Pspice simulator, it establishes an interaction with the user starting from the
selection of a specific application till arriving to the optimum topology with all
parameter values and switches suggested. The topologies are stored in the
knowledge base as schematic files, allowing the Schematic to be able to display
the resulted circuit. This paper begins with the illustration of PEDAS general
outlook and its graphical user interface (GUI). It states the various and
attractive controls and tools used to build a smooth and flexible interaction

O. Bouketir et al: A Learning Aid Tool for Power Electronics Converters

36

medium with the user. Then, the topologies knowledge base representation and
implementation methods are detailed. This includes both types of this
knowledge; type-based topologies and application-based topologies. The access
paths to this knowledge and its manipulation procedures are explained when the
inference engine module is elucidated. Instances of the explanation and help
module are given. Lastly, the devices library module, its significance and its
considerable features and functions are thoroughly described and demonstrated.

2. PEDAS LAYOUT (GUI)

The general layout or the system outlook or the graphical user interface (GUI)
is of great importance. It gives the user the first impression about the tool.
Hence, this outlook must be designed carefully and cautiously. Fortunately, the
programming tool selected for the system development makes this task easy to
accomplish. Visual Basic programming language, one of its famous features is
the ability to provide pre-designed graphical controls (e.g. text boxes, command
buttons, and list boxes), dialog boxes and flexible menu development tool.
Each control has its own set of properties, methods, and events. This is to
provide the user with a standard way to make selections, carry out commands,
and perform input and output tasks. The programmer needs only to choose the
appropriate controls and place them to the required position on his layout form
and then write his own code of task the control to perform. Furthermore, Visual
Basic –in its professional edition- is equipped by a mean that allows the
programmer to create his own control to fit his specific needs. This mean is
called ActiveX technology which is an extension to the Visual Basic Toolbox.
The controls designed by using this technology can be added to the application
even though they were developed by a different programmer in different
locations. This is one of the features that make Visual Basic flexible and
widely acceptable (Reference). Obviously, it’s not possible to explore all the
features and characteristics of Visual Basic that have been employed to build
PEDAS GUI, but they will be imperceptibly revealed throughout this paper.
Figure 1 shows some useful controls and menus that make up PEDAS layout.

3. SYSTEM’S KNOWLEDGE CODING

Using Class Builder utility offered in the Visual Basic Add-ins a total of sixteen
(16) classes and subclasses (objects) were built. Fifteen (15) of them represent
the topologies knowledge base. One class represent the interfacing module
between PEDAS and PSpice. Among the first fifteen classes, fourteen (14) are
application-based knowledge, while one class encompasses the type-based
knowledge. The switching devices’ knowledge is represented by a database
object. The hierarchy of these classes is shown in Figure 2. It is worth to note
that one can build his objects without the assistance of the Class Builder utility,

J. Electrical Systems 1-2 (2005): 35-62

37

but because this utility is meant to help build class and collection hierarchy it’s
better to exploit it for the sake of time saving. Furthermore, the Class Builder
utility keeps track of the hierarchy of the built classes and collections and
generates the framework code necessary to implement them including their
interface (i.e. properties, methods and events).

In the figure only the interface (properties and methods) of the Single_Phase
subclass is shown. The Converters class is the one that represents the type-
based topologies. This class and the InterfaceModule class were created
separately from the remaining ones. We didn’t use the class builder for they
don’t have the hierarchy as the other class do. Nevertheless, the basic ideas are
the same in terms of implementation and accessibility through their interfaces.

3.1 Type-Based Knowledge

This part of knowledge encompasses eleven types of converter organised under
the four basic types of conversions (DC-to-DC, AC-to-DC, AC-to-AC and DC-
to-AC). Figures below show how these different converters appear to the user.
The basic schematic and brief information about the converter are provided
within this illustration. These converters are as follows:

• Buck converter (as shown in figure 3)

• Boost converter

• Buck-Boost converter

• Cuk converter

• Single-phase full wave rectifier (Uncontrolled)

• Three-phase rectifier (Uncontrolled)

• Single-phase AC controller

• Three-phase AC controller (wye-connected)

• Three-phase AC controller (delta-connected)

• Square-wave inverter

• PWM Inverter

O. Bouketir et al: A Learning Aid Tool for Power Electronics Converters

38

Figure 1: An instance of PEDAS general layout (GUI).

Figure 2. Class builder utility and classes’ hierarchy

J. Electrical Systems 1-2 (2005): 35-62

39

Figure 3. Buck converter layout in PEDAS environment

This type of knowledge is coded under only one class (object) as mentioned
earlier. This class is named Converters, where each of its methods represents
one topology among the above. All operations concerning one topology are
accomplished within this method. These operations vary from requesting the
user’s entries to circuit parameters calculation including the guidance of the
user through the process and the suggestion further steps if the inference engine
fails to come out with the required circuit. Below is a segment of listing code
shows the implementation of the SinglePhaseRectifier method, which
corresponds to the single-phase uncontrolled rectifier shown above.
Public Function SinglePhaseRectifier()

 On Error Resume Next
frst: vinput = InputBox("Please Enter The Input Voltage
(Volt)")

 If Val(vinput) <= 0 Then
 res = MsgBox("The Input Voltage Must be greater than
zero", 1, "PEDAS")

 If res = vbCancel Then Exit Sub
 GoTo frst
 End If
 vinput = 1.41 * vinput

frth: Freq = InputBox("Please Enter The Operating
Frequency (Hz)")

 If Val(Freq) <= 0 Then
 res = MsgBox("The frequency Value Must be greater than
zero", 1, "PEDAS")

 If res = vbCancel Then Exit Sub
 GoTo frth

O. Bouketir et al: A Learning Aid Tool for Power Electronics Converters

40

 End If
fith: RLoad = InputBox("Please Enter The Load value
(Ohm)")

 If Val(RLoad) <= 0 Then
 res = MsgBox("The Load Value Must be greater than

zero", 1, "PEDAS")
 If res = vbCancel Then Exit Sub
 GoTo fith
 End If

capc: Rf = InputBox("What'is the Maxminum Ripple Factor
for Vout (%)")

 If Val(Rf) <= 0 Then
 res = MsgBox("The Ripple Factor Must be greater than

zero", 1, "PEDAS")
If res = vbCancel Then Exit Sub
 GoTo capc
 End If
 Rf = Rf / 100
 Cap = (1 / Rf)
 Cap = Cap / (2 * Freq * RLoad)
 Cap = Cap * 1000000
 Cap = Format(Cap, "##.##")

Open "c:\msim53\1phrect.sch" For Input As #10
Open "c:\outp.sch" For Output As #20

 Dim srg As String
 Dim Leng As Integer
 Input #10, srg
 Close #10
 choice = 1
 Leng = Len(srg)
 For i = 1 To Len(srg)
 wrote = False
 If Left(srg, 1) = "&" Then
 Select Case choice
 Case 1
 k = vinput
 Case 2
 k = Freq
 Case 3
 k = RLoad
 Case 4
 k = Cap
 End Select
 choice = choice + 1
 Print #20, k;
 wrote = True
 End If
 If wrote = False Then
 Print #20, Left(srg, 1);
End If
If i < Leng Then
 srg = Right(srg, Len(srg) - 1)

 Else
 srg = srg

 End If
 Next i

J. Electrical Systems 1-2 (2005): 35-62

41

Close #20
SchInterface ("psched.exe c:\outp.sch")
SendKeys "{F11}", True
End Function

There are some remarks to be made about this type of knowledge. These
remarks are about its consistency, authenticity and usefulness.

• The first remark is that this knowledge and its coding are meant to give a
general idea about the four types of conversion in a simple and attractive
way, without the complexity of using general-purpose simulation tool.
Therefore, this part can serve as a demo or tutorial for students who deal
with converters for the first time.

• The encompassed topologies are merely examples of the some basic
topologies. One can easily observe the missing of many basic topologies
such as controlled rectifiers in AC-to-DC conversion and dc choppers with
isolation for the DC-to-DC conversion type.

• However, the missing topologies can be easily added and coded by adding
methods to the Converters class in the same form of the existed ones.

• This knowledge is not dynamic knowledge in term of the switching
devices. The switches are predefined, and the user is always provided by
the same switch within the same topology, regardless of its ratings.
Nevertheless, other parameters (e.g. filter values) are dynamically changed.

• The term “type-based” refers to the way that the user can access this
knowledge. The user has no way to access a particular circuit only through
its type of conversion. Therefore, this term doesn’t reflect the way the
knowledge is represented.

3.2 Application-Based Knowledge

This knowledge constitutes the kernel of the knowledge base. It encompasses
more than twenty-five (25) topologies organised under fourteen (14) objects
(classes and subclasses) with their own interfaces. This is a very different
knowledge from the above one. Although they may share some same
topologies, the ways of representation are totally dissimilar.

This part of knowledge is arranged in such a way that the user has the access to
a specific topology only through its application (see figure 4). Nevertheless, the
user can choose the type of conversion of the circuit if he/she knows it in order
to narrow the list of applications offered by PEDAS. Likewise, the internal
implementation of this knowledge is based on its type of conversion following
its way of representation. This implementation permits to exploit the usefulness
of the inheritance feature of OOP between the class and subclass and hence
reduce the development code and time drastically.

O. Bouketir et al: A Learning Aid Tool for Power Electronics Converters

42

Figure 4. Application-based knowledge (all applications).

The following sections show samples of the Dc_to_Dc, Dc_to_Ac) classes and
their interface implementation. Buck subclass also is dealt here with some
details.

1. Dc to Dc Class
This class as from its name covers all dc chopper topologies. The main
applications of this type of converters are in switching dc power supplies and
dc drives. They are widely used for traction motor control in electric
automobiles, trolley cars, marine hoists, forklift trucks and mine haulers. They
provide smooth acceleration control, high efficiency, and fast dynamic
response. They can be used also in conjunction with an inductor to generate a
dc current source especially for the current source inverter.

To efficiently synthesize these converters, four basic topologies are encoded
here. They are the buck, boost, buck-boost and Cuk topologies. However, other
topologies such as flyback, forward, push-pull and full-bridge converters can be
added to enlarge this knowledge. One should examine each of these topologies
thoroughly in order to determine its necessary interface (properties and
methods). Once the interface is completely determined, they can be
implemented the same way as the first four were. Here only segments and
passages from the source code listings are given to show the implementation of
this class as it is impracticable to include the entire code.
Private Sub Class_Initialize()
 Set mvarBuck = New Buck
 Set mvarBoost = New Boost

J. Electrical Systems 1-2 (2005): 35-62

43

 Set mvarBuck_Boost = New Buck_Boost
 Set mvarCuk = New Cuk
End Sub
Private Sub Class_Terminate()
 Set mvarCuk = Nothing
 Set mvarBuck_Boost = Nothing
 Set mvarBoost = Nothing
 Set mvarBuck = Nothing
End Sub

The first sub is to create the subclasses’ instances whenever an instance of
parent class is created. The second sub is to destroy the created objects and free
the memory when the parent object is terminated. The following segments
illustrate how to get the input voltage and output voltage values from the user.
This is achieved by setting Vin and Vout properties in the parent class instead in
the subclasses, this is because in all topologies these values must be set by the
user. Hence these two properties are common between the four subclasses.
Public Property Get Vin() As Variant
 mvarVin = Val(Frm1.Text10)
 Vin = mvarVin
 mvarBoost.Vin = mvarVin
 mvarBuck.Vin = mvarVin
 mvarBuck_Boost.Vin= mvarVin
 mvarCuk.Vin= mvarVin
End Property
Public Property Get Vout() As Variant
 mvarVout = Val(Frm1.Text9)
 Vout = mvarVout
 mvarBoost.Vout = mvarVout
 mvarBuck.Vout = mvarVout
 mvarBuck_Boost.Vout= mvarVout
 mvarCuk.Vout= mvarVout
End Property

2. Ac to Dc Class
This is a parent class to cover rectifier topologies ranging from single phase
uncontrolled rectifiers to three-phase controlled rectifiers. Rectifiers are used to
change the ac input to a fixed (uncontrolled rectifiers) or to a controlled
(thyristor rectifiers) dc output. They are used mainly for unregulated dc power
supplies and variable-speed dc drives especially in high power applications
benefiting from the high ratings of SCRs. This class has two subclasses
Single_Phase and Three_phase based on the type of the input source available.
The initialisation and termination procedures of this class are accomplished the
same way for Dc_to_Dc class as the listings below show.

Private Sub Class_Initialize()
 'create the mThree_Phase object when the Ac_to_Dc class
is created
 Set mvarThree_Phase = New Three_Phase

O. Bouketir et al: A Learning Aid Tool for Power Electronics Converters

44

 'create the mSingle_Phase object when the Ac_to_Dc class
is created
 Set mvarSingle_Phase = New Single_Phase
End Sub
Private Sub Class_Terminate()
 'destroy the mThree_Phase object when the Ac_to_Dc
class is destroyed
 Set mvarThree_Phase = Nothing
 'destroy the mSingle_Phase object when the Ac_to_Dc
class is destroyed
 Set mvarSingle_Phase = Nothing
End Sub

Samples of some properties and methods of this class are given in the listings
below.
Public Sub C_Filter(Cap As Boolean)
 H = mvarRipple / 100
 If Cap Then
 mvarC = 1 / (2 * mvarFreq * mvarR_load * H)
 mvarC = 1000000 * mvarC
 mvarC = Round(mvarC)
 End If
End Sub
Public Property Get Ripple() As Variant
RippleVoltage:
 mvarRipple = Val(InputBox("Please Enter The Maximum
Ripple Allowed In Your Output Voltage(%)"))
 If mvarRipple <= 0 Then
 MsgBox ("Please Enter Positive Numerical Value")
 GoTo RippleVoltage
 Exit Sub
 End If
 Ripple = mvarRipple
 End If
End Property
Public Property Get Vout() As Variant
If Not mvarControlled Then
 If mvarH_Wave Then
 mvarVout = (mvarVin * Sqr(2)) / (3.14159)
 Vout = mvarVout
 Else
 mvarVout = (2 * mvarVin * Sqr(2)) / (3.14159)
 Vout = mvarVout
 End If
 Else
OutVoltage:
 mvarVout = Val(InputBox("What's your Machine Operating
Voltage, (Volt)"))
 If mvarVout <= 0 Then Exit Sub
 If mvarVout >= 0.9 * mvarVin Then
 Vin30 = MsgBox("Your Source is Unable to Provide
this Voltage, Please Change Either the Input or the Output
Volage", vbCritical + vbAbortRetryIgnore)
 If Vin30 = 3 Then Exit Sub
 GoTo OutVoltage

J. Electrical Systems 1-2 (2005): 35-62

45

 Exit Sub
 End If
 Vout = mvarVout
 End If
End If
End Property

The first passage is to calculate the output filter value that corresponds to the
desired output voltage ripple entered by the user. The second segment is just to
show how to acquire the ripple value from the user and guide him if an invalid
value is entered. The last segment is to obtain the output voltage (Vout
property). Here two ways to get this value; if the application selected by the
user needs a controlled rectifier then this value is obtained from him by
soliciting procedure. In case of uncontrolled rectifier, the output voltage value
has to be calculated for that the user has no control on it once the source
voltage is specified. Note that in the controlled case, the user is prompted to
change the desired output voltage if the source is unable to meet it.

3. Buck Subclass
This is only to give an example of how the subclasses are implemented as child
classes of the parent classes. The Buck subclass is to cover all dc step-down
converter instances. The basic topology and its parameter calculation were
collected from various textbooks (8 and 9). Figure 5 shows an instance of a
basic circuit of the step down converter with resistive load and square wave
control scheme. Table 1 illustrates the properties and methods that were
extracted by analysing this topology to build the interface of the subclass. It
gives also brief description of each property and method.

Vout

C

L

Vin Switch

Figure 5: An instance of basic step-down Dc chopper with resistive load.

The following listing passages illustrate how some methods and properties
were implemented.
Public Sub Filter(Cfilter As Boolean)
d = mvarVout / mvarVin
If Cfilter Then
mvarC = (1-d)/(8 * mvarL * (mvarRipple) * mvarSw_Freq ^ 2)

O. Bouketir et al: A Learning Aid Tool for Power Electronics Converters

46

 If mvarC > 10000 Then
 res = MsgBox("The Capacitor is Too Large, " &
Str(mvarC) & " Please Increase the Input Voltage " &
mvarVin & " or Decrease the Output One" & mvarVout,
vbOKCancel)
 If res = vbCancel Then Exit Sub
 pass = False
 End If
Else
 mvarL = (1 - d) * mvarRLoad / (2 * mvarSw_Freq)
End If
End Sub

Table 1: Buck Subclass Properties and Methods
Name Type Description

C
Current
Filter
Iout
L
Ripple
R_Load
Sw_Freq
Switch
Vin
Vout

Property
Method
Method
Property
Property
Property
Property
Property
Property
Property
Property

To hold the capacitor filter value (calculated from method)
To calculate the average output current
To calculate the filters’ values (L and C)
To hold the output current value (calculated from method)
To hold the inductor filter value (calculated from method)
To hold the desired ripple factor (from the user)
To hold the user’s load value (from the user)
To hold the suitable switching frequency (Suggested by the System)
To hold the selected switching device (Selected by the System)
To hold the input voltage value (from the user)
To hold the desired output voltage value (from the user)

It is seen from the source code segment that this method serves to calculate
both of the filter values (i.e. C and L). Which one is to be calculated depends on
the setting of the argument (Cfilter) upon calling the method. If the argument is
set to True then the capacitance will be calculated, otherwise the inductance is
to be calculated and returned as a function value. The argument is set by the
inference engine outside the interface, it set through the interaction module as it
will be detailed later.
Public Property Get Switch() As Variant
 mvarSwitch = Libfrm3.SearchResult2("MOSFET",
mvarVin, mvarIout)
 Switch = mvarSwitch
End Property

The switch here is extracted from the database using SerachResult2 function
which is called from the devices library module where it is developed. Here the
type switch selected “MOSFET” as a rule of thumb. Upon calling this function,
the ratings (i.e. voltage and current ratings) are required. This means that it can
not be called only after getting these two values which correspond to Vin and
Iout properties respectively. This vital function was developed using structured
query language (SQL) procedures and statements embedded in Visual Basic.
The following listing is a portion taken from the source code of this function.

J. Electrical Systems 1-2 (2005): 35-62

47

Set dbsPowerDevice = OpenDatabase(Filename,
dbDriverCompleteRequired, Fales, DatabaseConnect)
 Set rstSCR = dbsPowerDevice.OpenRecordset("SELECT * FROM
" & DeviceSearch)
 If VoltageSearch = "" Then
 VoltageSearch = "'*'"
 Else
 VoltageSearch = VoltageSearch
 End If
 If CurrentSearch = "" Then
 CurrentSearch = "'*'"
 Else
 CurrentSearch = CurrentSearch
 End If
Do While True
 strMain = "[Voltage] " & "> " & VoltageSearch & " and
[Current] " & "> " & _CurrentSearch
 With rstSCR
 .MoveLast
 .FindFirst strMain
 If .NoMatch = True Then
 searchNext = MsgBox("No" & DeviceSearch & " Meets
Your Requirements", vbOKOnly, "No Device found")
 Exit Do
 End If
 Do While True
 varBookmark = .Bookmark
 Data1 = rstSCR!Name
 Data2 = rstSCR!Device
 Data3 = rstSCR!Type
 Data4 = rstSCR!Voltage
 Data5 = rstSCR!Current
 Data6 = rstSCR!SFrequency
 Data7 = rstSCR!Package
 Data8 = rstSCR!manufacture
 If rstSCR!price = 0 Then
 Data9 = "-"
 Else
 Data9 = rstSCR!price
 End If
 Set ItmXY = Frm1.Combo2
 Set VoltCombo = Frm1.Combo1(0)
 Set currcombo = Frm1.Combo1(1)
 Set ManfCombo = Frm1.Combo1(2)
 Set PriceCombo = Frm1.Combo1(3)
 ItmXY.AddItem Data1 & " at " & Data9
 VoltCombo.AddItem Data4
 currcombo.AddItem Data5
 ManfCombo.AddItem Data8
 PriceCombo.AddItem Data9
 HowManyData = HowManyData + 1
 If Not rstSCR!price = 0 Then
 If rstSCR!price < CheapPrice Then
 CheapPrice = rstSCR!price
 CheapName = rstSCR!Name

O. Bouketir et al: A Learning Aid Tool for Power Electronics Converters

48

 voltagerating = rstSCR!Voltage
 currentrating = rstSCR!Current
 manufac = rstSCR!manufacture
 End If
 End If
 rstSCR.FindNext strMain
 If IIf(rstSCR.NoMatch, False, True) = False Then
 .Bookmark = varBookmark
 SearchResult2 = CheapName
 Exit Function
 End If
 Loop
 End With
 Exit Do
Loop
rstSCR.Close
dbsPowerDevice.Close

The three argument of this function are required, if on argument or more is
missing the searching process will not be launched and an error will be
generated warning the user about the void research. Once the search is initiated
and the ratings are within the stored values, the function doesn’t only return one
switch, but it returns all the devices that satisfy its arguments (i.e. the ratings).
Yet it suggests and recommends the cheapest device among the resulted
switches meanwhile the user is given the hand to change this device if his
concern is more on other parameters (the manufacturer par example) than on
the price as shown in figure 6.

Fig.6. The returned results of the optimum switches.

J. Electrical Systems 1-2 (2005): 35-62

49

Get the User’s Action

Invoke the Corresponding Class

Get the User’s Insertions

 Assert New Facts

Facts Matching

Conclusion

Terminate the Invoked Class

Display the Conclusion

Fig.7. Ordinary steps of the inference engine flow.

3.3 Inference Engine

The inference engine operates on the knowledge base in its search of solutions.
It matches the facts asserted from the user inputs against the stored facts in the
system’s knowledge base in order to come out with results or new facts. The
inference engine accesses the knowledge base through the class interfaces.
Once the user selects his application or type of converter through the
interaction module, the inference engine invokes the class methods and
properties whenever needed to infer conclusions or assert facts. A sketch of the
inference engine process flow is illustrated in figure 7.

The steps shown above are general steps to be followed in order to reach the
final result. The first step is to know what type of knowledge the user wants to
access in order to invoke the right class module as a response to the user action.
Then, through the interaction module the user is required to insert his inputs
and specification which will be used by the inference engine to assert new facts
and finalise the results through the invoked class interface. Once the results are
finalised, they are to be sent for displaying through the interaction and interface
modules. Sample of the source code to show how to access the Boost subclass
is shown below.
Private Sub BoostCon()
Set con = New Dc_to_Dc
Vout = con.Vout
 If Vout <= 0 Then

O. Bouketir et al: A Learning Aid Tool for Power Electronics Converters

50

 res = MsgBox("The Output Voltage Must be Greater
Than Zero", vbOKCancel)
 Exit Sub
 End If
RLoad = con.RLoad
 If RLoad <= 0 Then
 res = MsgBox("The Load Must be Greater Than
Zero", vbOKCancel)
 Exit Sub
 End If
 Rload1 = RLoad / 1000 ‘ convert to kOhm
Ripple = con.Boost.Ripple
 If Ripple <= 0 Then
 ms = "The Ripple Value Must be Greater than Zero"
 res = MsgBox(ms, vbOKCancel)
 Exit Sub
 End If
Vin = con.Vin
 If Vin >= Vout Or Vin <= 0 Then
 res = MsgBox("The Input Voltage must be Less than the
Output One" & Str(Vout), vbOKCancel)
 Exit Sub
 End If
d = (1 - (Vin / Vout))
f = con.Boost.Sw_Freq '
Lmin = con.Boost.L
Imax = con.Boost.Iout * Lmin * f)))
C = con.Boost.C
C = Format(C, ".00")
Lmin = Format(Lmin, ".000")
Imax = Format(Imax, ".000")
swtch = con.Boost.Switch
k = 0

For i = 0 To Combo1(0).ListCount - 1
ReDim Preserve swtype(k), price(k), VoltR(k), CurrR(k),
IDa(k), manfact(k)
price(k) = Combo1(3).List(i)
VoltR(k) = Combo1(0).List(i)
CurrR(k) = Combo1(1).List(i)
manfact(k) = Combo1(2).List(i)
IDa(K) = Combo1(5).List(i)
k = k + 1
Next i
If swtch <> Empty Then
 minp = Libfrm3.CheapPrice
 VoltageR = Libfrm3.voltagerating
 CurrRating = Libfrm3.currentrating
 manufac = Libfrm3.manufac
 Combo2.Text = swtch + " at RM " + Str(minp)
 Frame3.Visible = False
 If Combo2.ListCount > 1 Then
 Frame1.Caption = Str(k) + " Matched Switches (You may
change the Optimum Switch
 from the list below)"
Else

J. Electrical Systems 1-2 (2005): 35-62

51

 Frame1.Caption = "Only One Switch Matches Your
Specifications"
End If
 Output ‘ call the output subroutine to display the output
results
End If
End Sub

The first step to access this segment of the knowledge base is by creating a new
instance of the Dc_to_Dc class, using the Set and New keywords. This
automatically will create an instance of the Boost subclass in the
Class_Initialize sub as was shown in the precedent section. After gaining
access to the Boost subclass, the inference engine starts asserting the facts and
concluding results through the subclass interface before it finalises the results
and send them to be displayed.

3.4 Interface Module

This module is the intermediate channel between PEDAS and the simulation
package (PSpice). It serves in displaying the resulted circuit, its simulation
process and results in PEDAS environment. After the inference engine decision
is made, it sends relevant data and information (files *.sch, *.net and *.cir) to
this module in order to call the simulation package to display and simulate the
circuit. The connection process was achieved by using Application
Programming Interface (API) technique. This technique is a complicated set of
functions, messages, and structures allowing programmers in all types of
programming languages to build applications that run on the Windows and
Windows NT operating systems (Noel and Erik, 1996). PEDAS uses this set to
request and carry out lower-level services performed by a computer's operating
system. The following listing shows how this technique is exploited in the
InterfaceModule class. All functions preceded by the keywords Private Declare
Function (e.g. GetParent function) are API functions called by PEDAS in
incoming procedures. An instance of displaying the resulted circuit within
PEDAS environment is shown figure 8.
Private mvarPid As Long 'local copy
Private mvarInterfProg As String 'local copy
Private Declare Function FindWindow Lib "user32" Alias
"FindWindowA" (ByVal lpClassName As Long, ByVal
lpWindowName As Long) As Long
Private Declare Function GetParent Lib "user32" (ByVal hwnd
As Long) As Long
Private Declare Function SetParent Lib "user32" (ByVal
hWndChild As Long, ByVal hWndNewParent As Long) As Long
Private Declare Function GetWindowThreadProcessId Lib
"user32" (ByVal hwnd As Long, lpdwProcessId As Long) As
Long
Private Declare Function GetWindow Lib "user32" (ByVal hwnd
As Long, ByVal wCmd As Long) As Long

O. Bouketir et al: A Learning Aid Tool for Power Electronics Converters

52

Private Declare Function DestroyWindow Lib "user32" (ByVal
hwnd As Long) As Long
Private Declare Function Putfocus Lib "user32" Alias
"SetFocus" (ByVal hwnd As Long) As Long
Public Function ProgrInstance(ByVal Target_pid As Long) As
Long
Dim test_hwnd As Long, test_pid As Long, test_thread_id As
Long
 'Find the first window
 test_hwnd = FindWindow(ByVal 0&, ByVal 0&)
 Do While test_hwnd <> 0
 'Check if the window isn't a child
 If GetParent(test_hwnd) = 0 Then
 'Get the window's thread
 test_thread_id =
GetWindowThreadProcessId(test_hwnd, test_pid)
 If test_pid = Target_pid Then
 ProgrInstance = test_hwnd
 Exit Do
 End If
 End If
 'retrieve the next window
 test_hwnd = GetWindow(test_hwnd, 2)
 Loop
End Function
Public Property Let InterfProg(ByVal vData As String)
'used when assigning a value to the property, on the left
side of an assignment.
'Syntax: X.InterfProg = 5
 mvarInterfProg = vData
End Property
Public Property Get InterfProg() As String
'used when retrieving value of a property, on the right
side of an assignment.
'Syntax: Debug.Print X.InterfProg
 InterfProg = mvarInterfProg
End Property
Public Property Let Pid(ByVal vData As Long)
'used when assigning a value to the property, on the left
side of an assignment.
'Syntax: X.Pid = 5
 mvarPid = vData
End Property

Public Property Get Pid() As Long
'used when retrieving value of a property, on the right
side of an assignment.
'Syntax: Debug.Print X.Pid
 Pid = mvarPid
End Property

J. Electrical Systems 1-2 (2005): 35-62

53

Figure 8. Displaying the Resulted Circuit within PEDAS Environment

3.5 Explanation Module

The explanation facility allows the system to explain its reasoning to the user in
language that he/she can understand through a user interface. These
explanations include justification for the system’s conclusions (the know how),
and the explanation why the system needs a particular data (the why query). In
some systems, a tutorial explanations or deeper theoretical justifications of
program’s action are granted. For instance, in PEDAS this module is designed
to guide and help the user:

• to find out how the results have been achieved and
• to provide general information about the circuit topologies and switching

devices and
• to enhance the understanding of the converter operation by providing a

tutorial-like facility.
In fact, the first point is inclusive in the interaction module. From the
communication process, the user can know how certain results have been
reached. A help module was developed to accomplish the second purpose. This
module gathers basic information, formulas and topologies for each type of
conversion. Relevant information has to be gathered and collected from various
books and articles and then coded into this module. An auxiliary component to
this module is developed to provide a simulation-like demo of basic converters
based on their ideal parameters (see figure 9). This component can be
considered as a learning aid system for students to get a comprehensive
understanding of power electronics converters operations. Various parameters
are made available for the user to change and see their impacts on the converter
performance through its waveforms.

O. Bouketir et al: A Learning Aid Tool for Power Electronics Converters

54

Figure 9: An instance of PEDAS simulation-like Demo

3.6 Devices Library Module

This module is a part of the knowledge base module described above. It
contains power electronics switching devices along with their relevant
necessary information such as type, current and voltage ratings. Figure10 gives
a general view of this module. Such module encompasses huge data and allows
the user to add more data during the lifetime of the system. This requires the
use of a database to provide efficient handling and management of the data.
Visual Basic offers a special engine called JET (Joint Engine Technology) to
ease the dealing with databases. JET allows the programmer to use the methods
and properties of Data Access Objects (DAOs) to access and manipulate
database information. These methods and properties allow the user to retrieve
data, modify the data and change the presentation order of the data. The
programmer could even modify the structure of the database by creating,
modifying, and deleting fields, tables and indexes.

Visual Basic 6 provides two controls to work with database files; the data
control (with its associated bound controls) and data access objects. The two
controls are not mutually exclusive, they can be used together to take advantage
of each.

The first step in gaining access to information in a database is to open the
database itself. “OpenDatabase” is a method of the “Workspace” object used to
open the database. How to use this method is illustrated below.

J. Electrical Systems 1-2 (2005): 35-62

55

 ‘Using the OpenDatabase method to access the
database.
Dim dbsPowerDevice As Database
Set dbsPowerDevice = OpenDatabase (“PowerDevice.mdb”,
False, False, DataBaseConnect)

As it is seen from the above listing, the OpenDatabase method has four
arguments. The first argument specifies the name of the database to be opened.
This is a required argument (i.e. it must be set), while the second, third and
fourth arguments are optional. The second argument specifies whether the
database will be opened for exclusive use (that’s no one else can access the
database while the user works with it). The third argument indicates whether
the database is to be opened for read-only, meaning that the user cannot modify
its contents. The fourth argument specifies various connections information,
including passwords. It is worth to note that the database “PowerDevice.mdb”
is already created using any Database Management System (DBMS) such as
Microsoft Access for instance.

This module is enhanced by several functions that can be seen clearly from the
main menu (or toolbar) Here only few of them are discussed in details.

1. Search Function

Its icon is in most left side of the toolbar. It can be accessed also form the
Search submenu under the File menu (Ctrl + S). As shown in figure 11 it
provides several criteria for searching a specific record. These criteria can be
set all together as well as, the user has the advantage to set only some (at least
one) of them for fast searching.

Note that for this function, the Recordset is opened as snapshot since there is no
need to change the data inside the database. The following listing lists the steps
to find a record.
Set dbsPowerDevice = OpenDatabase(Filename, False, Fales,
DatabaseConnect)
Set rstSCR = dbsPowerDevice.OpenRecordset("SELECT * FROM "
& ImageCombo1.Text, dbOpenSnapshot)
strMain = "[Name] LIKE " & "'" & NameSearch & "'" & _
 " and [Device] LIKE " & "'" & DeviceSearch & "'" & _
 " and [Type] LIKE " & "'" & TypeSearch & "'" & _
 " and [Voltage] LIKE " & "'" & VoltageSearch & "'" & _
 " and [Current] LIKE " & "'" & CurrentSearch & "'" & _
 " and [SFrequency] LIKE " & "'" &
SwitchingFrequencySearch & "'"
 With rstSCR
 .MoveLast
 .FindFirst strMain
If .NoMatch = True Then
 searchNext = MsgBox("Device not found. Find
another device with ratings similar to it?", vbYesNo, "No
records found")

O. Bouketir et al: A Learning Aid Tool for Power Electronics Converters

56

 If searchNext = vbYes Then
 VoltagePercent = "< " & VoltageSearch +
((VoltageSearch * 25) / 100)
 VoltageSearch = "> " & VoltageSearch
 CurrentPercent = "< " & CurrentSearch +
((CurrentSearch*25) / 100)
 CurrentSearch = "> " & CurrentSearch
 End If
strMain = "[Name] LIKE " & "'" & NameSearch & "'" &
" and [Device] LIKE " & "'" & DeviceSearch & "'" & " and
[Type] LIKE " & "'" & TypeSearch & "'" &" and [Voltage] " &
VoltageSearch & " and [Voltage] " & VoltagePercent & " and
[Current] " & CurrentSearch & " and [Current] " &
CurrentPercent &" and [SFrequency] LIKE " & "'"
&SwitchingFrequencySearch
 .MoveLast
 .FindFirst strMain
If .NoMatch = True Then
 MsgBox "No device with similar ratings.", , "Not Found"
 Exit Do
End If
End If

It can be seen from the above listing, that in case of searching a device by its
voltage or current rating and if the Nomatch property is true, the user is
provided by an optional search of a similar device which has (±25%) tolerance
of rating values. Even though some lines of the above listing are similar to that
in SearchResult2 function discussed above both function are different in that:

• The Search Function deals directly with the user, while SearchResult2
function deals internally within the system in terms of arguments and
return values.

• SearchResult2 function needs all its arguments to be set, while the
arguments of Search function are optional but at least one of them has to
be set.

2. Update Function
This function is to update the data in the opened Recordset firstly and then in
the database. The Edit method is used to copy the new information entered by
the user to the data buffer. Then the new data are assigned to fields of the
Recordset and the Update method (not function) is called to write (physically)
the record’s changes and store them. This function is accessible from the
Update submenu under the File main menu. It’s also accessible from the
toolbar or shortcut key “Ctrl U”.

A listing of code source below shows a segment of Update function and its
dialogue box is given in figure 12.
Set dbsPowerDevice = OpenDatabase(Filename,
dbDriverCompleteRequired, False, DatabaseConnect)

J. Electrical Systems 1-2 (2005): 35-62

57

 Set rstSCR = dbsPowerDevice.OpenRecordset("SELECT * FROM
" & Devicetxt, dbOpenDynaset)
With rstSCR
!Manufacture = Manftxt
rstSCR!price = Pricetxt
.Update
.Bookmark = .LastModified
.Edit
!Name = strName
!Type = strType
End With

Only two fields can be modified and hence updated, these are the manufacturer
and the price of the device. The Enable property of other fields is set to “False”
so the user has no access to them.

3. Add Function
The Add function is to enable user to add in new components when they are
introduced into the market. By this way, the user will be able to keep the
program updated as and when new products are released by the manufacturers.
The code below shows how the addition operation is performed.
Set dbsPowerDevice = OpenDatabase(Filename,
dbDriverCompleteRequired, False, DatabaseConnect)
 Set rstSCR = dbsPowerDevice.OpenRecordset("SELECT *
FROM " & ImageCombo1.Text, dbOpenDynaset)
 strName = NameAdd
 strDevice = ImageCombo1.Text
 strType = TypeAdd
 ……….
 If strName <> "" And strDevice <> "" And strType <> "
Then
 rstSCR.AddNew
 rstSCR!Name = strName
 rstSCR!Device = strDevice
 rstSCR!Type = strType
 rstSCR.Update
 rstSCR.Bookmark = rstSCR.LastModified
 Set AItem = Form1.ListView1.ListItems.Add()
 ‘To visualize the new added record
 AItem.Text = strName
 AItem.SubItems(1) = strDevice
 AItem.SubItems(2) = strType
 MsgBox ("The component is stored into Database."), ,
"Add"
End if

There are three fields that must be specified by the user before a component can
be added into the database. The compulsory fields are 'Name', 'Voltage' and
'Current.' After these ratings are entered, the component will be added to the
database. User will be prompted that the component has been added.

O. Bouketir et al: A Learning Aid Tool for Power Electronics Converters

58

This function is accessible by 'Add Data’ Submenu under 'File' menu or by the
shortcut key is 'Ctrl + A'. It can also be called upon by clicking on its
corresponding icon on the toolbar menu. An instance of this function is shown
in figure 13.

4. Delete Function
The 'DELETE' function is to enable the user to delete a component when it is
no longer exists in the market. This keeps the database alive and managed
efficiently. The following segment of source code gives an idea how this
process is accomplished.
Sub Delete()
Dim dbsPowerDevice As Database
 Dim rstSCR As Recordset
 Set dbsPowerDevice = OpenDatabase(Filename, False,
False, DatabaseConnect)
 Set rstSCR =
dbsPowerDevice.OpenRecordset(ListView1.SelectedItem.SubItem
s(1), dbOpenDynaset)
Picture1.Picture = LoadPicture
Libfrm1.Label1.Caption = ""
YNDelete = MsgBox("Are you sure you want to delete '" &
Libfrm1.ListView1.SelectedItem.Text & "' ?", 4, "Warning!")
If YNDelete = vbNo Then
 Exit Sub
End If
With rstSCR
.MoveFirst
 Do While True
 If (rstSCR!Name) = ListView1.SelectedItem.Text Then
 Exit Do
 Else
 .MoveNext
 End If
 Loop
End With
rstSCR.Delete
Dselect = ListView1.SelectedItem.Index
ListView1.ListItems.Remove (Dselect)
MsgBox ("The component has been removed from Database."), ,
"Delete"
rstSCR.Close
dbsPowerDevice.Close
End Sub

To delete a particular component, first select the component by highlighting it.
Then, click the 'DELETE' icon on the toolbar menu a 'Delete' dialog box will
appear and prompt for confirmation whether the component is to be deleted.
Click 'Yes' to delete the component from the database. To cancel the process,
click 'No'. The deleting process will be stopped.

Note that the component will be permanently deleted from the database by this
process. If the user wishes to have the component back into the database, he

J. Electrical Systems 1-2 (2005): 35-62

59

needs to use the 'ADD' function. There are other functions provided in this
module, such as the characteristic curves of certain devices, their data-sheets
and package numbers. This is shown in figure 14.

Figure 10. PEDAS switching devices’ library

Figure 11. Search function dialog box and its search fields

O. Bouketir et al: A Learning Aid Tool for Power Electronics Converters

60

Figure 12: Update function dialog box

Figure 13: Add Function Layout

Figure 14. Output characteristics of D1N4001 in PEDAS

J. Electrical Systems 1-2 (2005): 35-62

61

4. CONCLUSION

PEDAS is academic software was developed to push the design of power
electronics converters one step forward. It aimed to improve the design
procedure in terms of simplicity, flexibility and smoothness as well as time-
consumption. This is successfully achieved by introducing knowledge-based
techniques. The proposed system architecture assures a flexible interaction
between the user and the tool as well as among the various modules
constituting the system itself. The knowledge base containing topologies and
switching devices is represented using object-oriented paradigm. It is the
function of the inference engine to find the suitable topology that matches the
user entries. Benefiting from the object oriented programming and the design
visibility features of Visual Basic programming language; an attractive user
interface is developed to assure the interaction of the user with the system.
Furthermore, a library module enhanced by several vital functions is developed.
This library makes the developed tool independent in its devices from that of
the simulation package. A help module that explains how to use the developed
tool and gathers information about power electronics converters is built and
linked to the tool. This is enhanced by a flexible demo for further strengthen the
understanding of converters operation. PEDAS still need some improvement in
terms of expansion of the knowledge base and explanation modules.

5. REFERENCES

[1] M. J. Cumbi, D.W. Shepherd, and L. N. Hulley, Development of an Object-
Oriented Knowledge-Based system for Power Electronic Circuit Design, IEEE
Trans. Power Electronics 11(3): 393-404, 1996.

[2] D. Fezzani, H. Piquet and H. Foch, Expert System for the CAD in Power
Electronics – Application to UPS, IEEE Trans. Power Electronics 12(3):578-587,
1997.

[3] S. J. Wang and Y. S. Lee, Development of an Expert System for Designing,
Analysing and Optimising Power Converters, IEEE Trans. Power Electronics,
1996.

[4] L. E. Amaya, Computer Synthesis of Switching Power Converters, Ph.D. diss.,
Dept. of Electrical and Computer Engineering Illinois Univ. at Urbana-Champaign,
1998.

[5] N. Masatoshi, A Fast Computer Algorithm for Switching Converters, IEEE Tran.
Power Electronics 12(1):180-186, 1997.

[6] K. Debebe and V. Rajagopalan, A Learning Aid for Power Electronics with
Knowledge-Based Components, IEEE Tarns.Education, 38(2):171-176, 1995.

[7] D. Fezzani, H. Piquet, H. Foch and Ph. Nogaret, A Few Discussions on Expert
System Development for Electrical Power Systems-Optimization of Inverter-
Motor of a Railway Traction Chain, Eur. Phys. J. AP 4: 53-64, 1998.

[8] M. H. Rashid, Power Electronics Circuits Devices and Applications, 2nd ed.
Prentice-Hall International, Inc, 1993.

O. Bouketir et al: A Learning Aid Tool for Power Electronics Converters

62

[9] W. H. Daniel, Introduction to Power Electronics. Prentice-Hall International, Inc
1997.

[10] O. Bouketir, M. Norman, A. Ishak, M. B. Senan and T. Soib, Expert System-Based
Approach to Automate the Design Process of Power Electronics Converters.
Proceedings of the International Conference “IEEE/PES T&D Asian Pacific”. Oct
2002, Yokohama, Japan, pp: 1943-1946.

[11] O. Bouketir, M. Norman, A. Ishak, M. B. Senan, and T. Soib, Computer Aided
Design Tool for Power Electronic Converters, Proceedings of the International
Conference ROVISP, Jan 2003, Penang Malaysia, pp 709-716.

[12] B. Omrane, N. Mariun, I. Aris, S. Mahmoud and T. Soib, Knowledge-Based
Design Aid Tool for Power Electronic Converters, to appear in Engineering
Computations Journal, UK.

