Réduction des pertes de puissance dans un réseau de distribution alimenté par un générateur d'énergie nouvelle et renouvelable

R. Tchuidjan^{*}, O. Hamandjoda et M. Tabe

Power Unit – Automation and Control Laboratory Yahoudé I University, Ecole Nationale Supérieure Polytechnique P.O. Box 8390, Yaoundé, Cameroun

(reçu le 21 Juin 2011 – accepté le 29 Septembre 2011)

Résumé - Ce papier montre qu'une des difficultés à laquelle le distributeur d'énergie électrique nouvelle et renouvelable se heurte est le problème des pertes d'énergies en ligne, dues principalement aux résistances actives et réactives. Une approche de résolution du problème présentée ici, consiste à déterminer le point où il faudra placer le générateur d'énergie nouvelle et renouvelable, de telle sorte que les pertes de puissance dans le réseau électrique de distribution soient considérablement réduites. Cette position est appelée Centre de Répartition des Charges, 'CRC'. La méthode utilisée est en fait une sorte de centre de gravité d'un système constitué de points pondérés par les puissances des différents consommateurs. Il est démontré ici que le centre de répartition des charges électriques obéit à une loi normale de distribution. La technique du centre de répartition des charges permet d'obtenir des longueurs optimales de câbles électriques pour la distribution de l'énergie produite par un générateur solaire ou éolien. Moins les câbles électriques sont longs, les pertes en lignes sont réduites, le coût de l'installation est également réduit. Les résultats obtenus montrent que si le centre de répartition des charges électriques se trouve dans l'ellipse, alors les pertes de puissance électriques sont minimales. Force est de constater la réduction du nombre de panneaux photovoltaïques à employer, si la position géographique du générateur d'énergie nouvelle et renouvelable a été choisie selon la technique du CRC.

Abstract - One of the difficulties encountered by distributors of renewable electrical energy is that of higher investment and operational costs due mainly to ohmic losses caused by line resistances and reactances. A possible approach to address this problem is to determine analytically the optimum placement of the renewable energy generator, such that the overall line losses in the entire network are reduced considerably. Such a supply point is referred to here as the optimal Load Distribution Centre 'LDC'. The method used in this paper is comparable to the determination of the centre of gravity of a system made up of points weighted with the power ratings of the various electrical loads. It delivers optimum cable lengths between the load and the solar or wind energy generator. The shorter the cables, the lower their initial installation costs, and of course also the lower the heat losses in them during operation. The results obtained here show that the optimum placement of the LDC respects the normal distribution law. Possible positions for the LDC that yield minimum line losses describe an ellipse around the computed LDC coordinates. It is furthermore shown that the number of photovoltaic cells needed for a solar station can be reduced when this method is used to determine the optimum geographic placement of the supply point.

Mots clés: Energie renouvelable - Centre de répartition des charges - Pertes de puissances électriques - Conducteurs électriques.

tchuir@yahoo.fr

1. INTRODUCTION

La satisfaction de la demande d'électricité des populations rurales par la liaison au réseau national se heurte à plusieurs difficultés: la faible densité et la dispersion de la population, la faiblesse des revenus, l'inexistence ou la faiblesse de structures collectives au niveau villageois. Aussi, il est nécessaire d'explorer de nouvelles solutions possibles pour assurer une électrification rationnelle du monde rural, par exemple l'exploitation du potentiel solaire abondant dont disposent la plupart des pays africains.

L'énergie solaire photovoltaïque (PV), qui est la conversion directe de la lumière en électricité grâce à des cellules solaires, représente une alternative intéressante et bien adaptée à des besoins limités. Malgré sa facilité de mise en oeuvre, son faible impact environnemental et le peu d'entretien qu'il nécessite, un système photovoltaïque n'est plus concurrentiel lorsque la demande augmente. Ainsi une étude assez rigoureuse est nécessaire pour faire le meilleur choix et le plus performant avec le moindre coût possible [1-3].

La production d'énergie électrique à partir des sources d'énergie nouvelle et renouvelable en zone rurale n'est généralement pas de grande quantité. Une perte de puissance dans son réseau de distribution entraînera un surcoût de la production. Dans le cas particulier des centrales solaires, utilisant les panneaux solaires PV et alimentant des villages, la puissance produite est faible, c'est-à-dire que pour satisfaire une grande puissance, il faudrait un nombre élevé de générateurs PV.

Bien plus le fait de prendre en compte les pertes en lignes, implique une augmentation non négligeable du nombre de modules PV à utiliser, et ainsi une augmentation du prix de revient de la centrale de production et une augmentation de la facturation de l'énergie électrique. Il devient donc impératif de réduire au maximum ces pertes en lignes.

Dans le but de minimiser les pertes en ligne, d'améliorer l'efficacité des systèmes et réseaux électriques, et réduire aussi les factures d'achat des équipements, il est important de déterminer le lieu où on devra placer le CRC, lieu à partir duquel la distribution se fera dans le réseau électrique.

Dans la plupart des cas, aucune étude n'est menée pour déterminer le lieu géographique optimal pour l'implantation de la mini-centrale de production. La position du générateur d'énergie nouvelle et renouvelable (centre de répartition des charges électriques) peut avoir une incidence sur la distribution de l'électricité.

L'objectif de ce travail est de présenter une méthode qui permet de limiter les pertes d'énergie dans les réseaux d'alimentation des habitations en zone rurale, grâce à une bonne implantation géographique du centre de répartition des charges. Les pertes d'énergies électriques dans les réseaux de transport et de distribution sont énormes. Leur réduction permettrait une augmentation certaine du nombre d'abonnés.

Parfois les sociétés de distribution d'énergie électrique, lorsqu'elles ne peuvent plus fournir de l'énergie aux abonnés, procèdent à un délestage pour permettre un fonctionnement normal du réseau [5, 6].

La répartition des charges met ensemble les notions d'organisation des différentes charges suivant les niveaux de tension et la variation des dites charges avec le temps sur un site donné. La répartition des charges électriques sur un site n'est bien définie que lorsqu'un bon bilan de puissance y est fait.

2. PLAN DU VILLAGE ET CARTOGRAMME DES CHARGES ELECTRIQUES ALIMENTEES PAR UN GENERATEUR D'ENERGIE NOUVELLE ET RENOUVELABLE

On appelle charge électrique (récepteur, usagers), un dispositif qui transforme l'énergie électrique en une autre forme d'énergie (mécanique, chimique, thermique,...). Dans le cas des usines, on peut avoir les différents moteurs, fours et autres. Ces charges électriques ou récepteurs sont répartis de manière informelle et aléatoire sur le site de l'usine.

Pour mieux choisir le schéma de distribution d'une entreprise, le cartogramme des charges joue un rôle très important.

Le cartogramme des charges présente l'ensemble des charges du village, en respectant autant qu'on le peut leur disposition effective sur le site (dans l'espace ou dans le plan).

Pour une meilleure gestion de la répartition des charges sur le site, nous représenterons chaque bâtiment par un cercle dont la surface est proportionnelle à sa charge électrique.

Dans tous les cas, il s'agit de remplacer les charges électriques par des cercles de surface proportionnelle, dont le centre coïncide avec le centre géométrique du bâtiment qui l'abrite.

Si la charge est répartie uniformément dans le bâtiment, le centre des charges doit coïncider avec le centre du cercle. Aussi, si toute la charge du bâtiment ou une partie n'est pas concentrée (cas des charges de haute tension: fours, moteurs asynchrone de haute tension, etc...), alors le centre de cette charge doit correspondre avec la répartition effective des récepteurs sur la surface du bâtiment. Le rayon du cercle représentant la charge électrique dans le bâtiment du village est donc donné par:

$$R_{i} = \sqrt{\frac{P_{i}}{\pi \times m}}$$
(1)

 R_i (cm²): Rayon du cercle correspondant au énième bâtiment en respectant l'échelle de la charge électrique du bâtiment.

P₁(kW): Puissance nominale correspondant au énième bâtiment.

m (kW/cm²): Echelle choisie pour le cartogramme de charges.

Tableau 1: Coordonnées géographiques du générateur d'énergie
nouvelle et renouvelable avant l'application de la théorie
du centre de répartition des charges électriques

N° Bâtiment	Ordonnée du centre géométrique du bâtiment (m)	Abscisse du centre géométrique du bâtiment (m)	Puissance active effective dans le bâtiment (W)	Distance du bâtiment au générateur d'énergie nouvelle et renouvelable (m)
1	300	1000	375	1044,030651
2	71,3	458	85	463,5166556
3	133,3	424	55	444,4602232
4	105,7	1020	250	1025,462086
5	237,3	1760	60	1775,925474
6	400	600	100	721,1102551
7	500	1500	55	1581,13883
8	75	2000	75	2001,405756
9	45	1600	125	1600,632687
10	500	250	50	559,0169944
11	400	2000	50	2039,607805
12	300	300	175	424,2640687
13	425	1700	25	1754,772065
14	410	1400	30	1458,800877
15	169,1	1500	55	1509,50151
16	0	0	50	0

Fig. 2: Position géographique du générateur d'énergie nouvelle et renouvelable (en rouge) avant l'application de la théorie du centre de répartition des charges électriques

3. TECHNIQUE DE CALCUL DU CENTRE DE REPARTITION DES CHARGES ELECTRIQUES DU BATIMENT

Pour définir le centre de répartition des charges électriques du site (village), nous utiliserons la méthode de la détermination du centre de gravité d'une figure géométrique.

Dans notre cas, le village est considéré comme une figure dont les bâtiments en sont des points pondérés par des puissances électriques correspondantes.

En présence de bâtiments à plusieurs étages, on peut s'écarter considérablement de la configuration plane et se rapprocher d'une configuration plus ou moins complexe. C'est pourquoi, il faudra tenir compte d'une troisième coordonnée parmi celles qui caractérise le centre de répartition de charge. En admettant que le centre recherché est un point $G(x_0, y_0, z_0)$, on aura:

$$x_{0} = \frac{\sum_{i=1}^{n} x_{i} \times P_{i}}{\sum_{i=1}^{n} P_{i}} ; \quad y_{0} = \frac{\sum_{i=1}^{n} y_{i} \times P_{i}}{\sum_{i=1}^{n} P_{i}} ; \quad z_{0} = \frac{\sum_{i=1}^{n} z_{i} \times P_{i}}{\sum_{i=1}^{n} P_{i}}$$
(2),(3),(4)

Où (x_i, y_i, z_i) représentent la position du i^{ième} bâtiment dans le site et n, le nombre de bâtiments implantés sur le site. P_i représente la puissance active consommée par le i^{ième} bâtiment

Il se dégage donc clairement que la détermination du centre conditionnel des charges électriques s'effectue sur la base des puissances actives des bâtiments et de leurs coordonnées.

Par ailleurs, il vaut mieux préciser que le calcul de z_0 (la 3^{ème} coordonnée) ne devient important et nécessaire que si le nombre d'étages du bâtiment est supérieur à trois (3).

Il est aussi possible de déterminer le centre conditionnel de charges réactives; dans ce cas, il faut utiliser les mêmes formules que précédemment ((2), (3), (4)) en remplaçant tout simplement les puissances actives P_i par les puissances réactives Q_i correspondantes.

Tableau 2: Coordonnées géographiques du générateur d'énergie nouvelle et renouvelable après l'application de la théorie du centre de répartition des charges électriques

N° Bâtiment	Ordonné du centre géométrique du bâtiment (m)	Abscisse du centre géométrique du bâtiment (m)	Puissance active effective dans le bâtiment (W)	Distance du bâtiment au générateur d'énergie nouvelle et renouvelable (m)
1	300	1000	375	1044,030651
2	71,3	458	85	463,5166556
3	133,3	424	55	444,4602232
4	105,7	1020	250	1025,462086
5	237,3	1760	60	1775,925474

6	400	600	100	721,1102551
7	500	1500	55	1581,13883
8	75	2000	75	2001,405756
9	45	1600	125	1600,632687
10	500	250	50	559,0169944
11	400	2000	50	2039,607805
12	300	300	175	424,2640687
13	425	1700	25	1754,772065
14	410	1400	30	1458,800877
15	169,1	1500	55	1509,50151
16	186.5211	912.0447	50	0

Fig. 3: Position géographique du générateur d'énergie nouvelle et renouvelable (en vert) après application de la théorie du centre de répartition des charges électriques

N°	Ordonnée du centre géométrique du bâtiment après application TCRC (m)	Abscisse du centre géométrique du bâtiment après application TCRC (m)	Distance du bâtiment au générateur d'énergie nouvelle et renouvelable avant application TCRC (m)	Distance du bâtiment au générateur d'énergie nouvelle et renouvelable après application TCRC (m)	Différence des distances ΔL=L _{av} – L _{ap} Gain en câble
1	113,478914	87,9552716	1044,030651	143,574349	900,456302
2	-115,221086	-454,044728	463,5166556	468,436243	-4,919587828
3	-53,2210863	-488,044728	444,4602232	490,938022	-46,47779833
4	-80,8210863	107,955272	1025,462086	134,856919	890,6051669
5	50,7789137	847,955272	1775,925474	849,474332,	936,4511423
6	213,478914	-312,044728	721,1102551	378,08089	343,0293654
7	313,478914	587,955272	1581,13883	666,303557	914,8352726
8	-111,521086	1087,95527	2001,405756	1093,656008	907,749674
9	-141,521086	687,955272	1600,632687	702,360786	898,2719015

Tableau 3: Gain en longueur de câble après repositionnement du générateur d'énergie nouvelle et renouvelable

Réduction des pertes de puissance dans un réseau de distribution alimenté par un... 455

10	313,478914	-662,044728	559,0169944	732,510923	-173,4939283
11	213,478914	1087,95527	2039,607805	1108,70191	930,905898
12	113,478914	-612,044728	424,2640687	622,475874	-198,2118051
13	248,478914	787,955272	1754,772065	826,20535	928,5667149
14	223,478914	487,955272	1458,800877	536,696536	922,1043413
15	-17,4210893	587,955272	1509,50151	588,213308	921,2882025
16	0	0		0	0

Tableau 4: Réduction des pertes de puissance dans le réseau

 après repositionnement du générateur d'énergie nouvelle et renouvelable

N°	Section du conducteur alimentant le bâtiment S (mm ²)	Facteur de puissance de l'ensemble des charges électriques du bâtiment (cos phi)	Tension d'alimentation du bâtiment (V)	Pertes de puissance dans chaque conducteur avant l'application de TCRC (%)	Pertes de puissance dans chaque conducteur après l'application de TCRC (%)	Gains en pertes de puissance dans chaque conducteur (W)
1	2,5	0,9	230	41,11651902	5,65431431	35,4622047
2	2,5	1	230	0,759676636	0,76773955	-0,00806292
3	2,5	0,85	230	0,42212979	0,46627247	-0,04414268
4	2,5	0,9	230	17,94899682	2,36044457	15,5885522
5	2,5	0,9	230	1,790473068	0,85643285	0,93404022
6	2,5	0,85	230	2,264067624	1,18705939	1,07700823
7	2,5	0,8	230	1,695278223	0,71440274	0,98087548
8	2,5	0,9	230	3,1528131	1,72283567	1,42997743
9	2,5	0,85	230	7,852346044	3,44562496	4,40672108
10	2,5	0,8	230	0,495348235	0,64908222	-0,15373399
11	2,5	0,8	230	1,807308429	0,98242726	0,82488117
12	2,5	0,9	230	3,638755753	5,33874498	-1,699989923
13	2,5	0,95	230	0,27566339	0,12979154	0,14587185
14	2,5	0,8	203	0,465354722	0,17120518	0,29414954
15	2,5	0,85	230	1,433661602	0,55866048	0,87500113
	TOT	AL DES PERT	ES	85,11839245	25,0050382	60,1133543

Les pertes de puissance dans les conducteurs de ligne électrique (**Tableau 4**) ont été déterminées par la relation:

$$\Delta P = \sqrt{3} \times \rho \times l \times J \times \left(\frac{P}{U \times \cos\phi}\right)$$
(5)

Où ρ est la résistivité du câble électrique, l la longueur de la ligne, J la densité du courant, P la puissance à acheminer, U la tension entre phase et $\cos \phi$ le facteur de puissance de l'installation.

L'expression (5) nous permet de mieux nous rendre compte que les pertes en lignes (ΔP) dépendent à la fois de la nature du câble (ρ), la puissance transmise (P), la charge ($\cos \phi$), la longueur de la ligne (1) et la tension de transport (U).

Le **Tableau 4** montre qu'avant l'application de la technique du CRC, l'ensemble des pertes de puissance dans le réseau était estimé à 85.12 W. Après l'application de cette technique, l'ensemble des pertes est estimé à 25.005 W.

En termes de pourcentage,

$$\Delta P(\%) = 100 \frac{\Delta P_{av} - \Delta P_{ap}}{\Delta P_{av}}; \text{ soit } \Delta P(\%) = 70,6232256\%$$
(6)

4. ZONE DE DISPERSION DU CENTRE DE REPARTION DES CHARGES ELECTRIQUES

Dans les entreprises industrielles, la variation permanente de la charge des différents bâtiments entraîne naturellement le déplacement des centres de charges desdits bâtiments. Et globalement, on assiste très souvent au déplacement ou simplement à la variation du centre de répartition des charges de l'entreprise.

Dans ce mouvement quasi perpétuel, le centre de répartition de charge balaie un domaine que nous appellerons tout simplement le Lieu des Centre de Répartition des Charge (LCRC) ou encore zone de dispersion du centre conditionnel de répartition des charges électriques.

Puisque nous avons déjà dit plus haut que la charge électrique est variable et aléatoire, il est donc évident que les coordonnées du centre de répartition des charges électriques sont des grandeurs aléatoires ou simplement des variables aléatoires. On vérifie aussi que ces variables suivent une distribution normale.

a- La loi normale

En probabilité, une variable aléatoire suit une Loi Normale ou Loi de Laplace-Gauss d'espérance m et d'écart type σ si elle admet une densité de probabilité f telle que:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \times e^{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^2}$$
(6)

Une telle variable aléatoire est dite variable gaussienne.

La loi normale est l'une des principales distributions de probabilité. Elle a été créée par le Mathématicien Abraham de Moivre en 1733 et utilisée par lui afin d'approcher des probabilités associées à des variables aléatoires binomiales possédant un paramètre n très grand. Cette loi a été mise en évidence par Gauss au XIX^{ème} siècle et permet de modéliser de nombreuses études biométriques.

Sa densité de probabilité dessine une courbe dite *courbe en cloche* ou courbe de Gauss. Le Théorème de Moivre Laplace affirme la convergence d'une loi binomiale vers une loi de Gauss quand le nombre d'épreuves augmente.

Le recours à une distribution gaussienne est si fréquent qu'il peut finir par être abusif. Il faut alors rechercher des critères de normalité.

Le premier critère, le plus simple, consiste à tracer l'histogramme ou le diagramme en bâtons de la distribution et à vérifier si le diagramme est en forme de 'cloche'. Ce critère, subjectif, permet cependant d'éliminer une partie des distributions jugées alors non gaussiennes.

Le critère suivant consiste à utiliser les plages de normalité ou intervalles de confiance. On a vu que si une distribution est gaussienne:

- 68 % de la population est dans l'intervalle $\left[\overline{x} \sigma; \overline{x} + \sigma\right]$
- 95 % de la population est dans l'intervalle $[\overline{x} 2\sigma; \overline{x} + 2\sigma]$
- 99 % de la population est dans l'intervalle $[\overline{x} 3\sigma; \overline{x} + 3\sigma]$

Où \overline{x} représente la moyenne d'une variable aléatoire X.

Lorsque ces pourcentages ne sont pas respectés, il est fort à parier que la distribution n'est pas gaussienne [4].

b- Position géographique optimale du générateur d'énergie nouvelle et renouvelable

D'après la description précédente de la loi normale, les densités de probabilité relatives aux coordonnées dans le plans (ou dans l'espace) (x, y), sont données par:

$$f(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \times e^{-\frac{1}{2} \left(\frac{x - \overline{x}}{\sigma_x}\right)^2} ; \quad f(x) = \frac{1}{\sigma_y \sqrt{2\pi}} \times e^{-\frac{1}{2} \left(\frac{x - \overline{y}}{\sigma_y}\right)^2} \quad (8),(9)$$

Notons que \overline{x} et \overline{y} représentent respectivement l'espérance mathématique des variables aléatoires X et Y. Aussi, σ_x et σ_y représentent quant à eux, les écarts types correspondants aux variables X et Y respectivement.

Par ailleurs, il est possible de définir la densité de probabilité en dimension 2. Ainsi, pour notre charge dans le plan, la densité de la répartition en relation avec les variables X et Y est définie par:

$$f(x,y) = \frac{h_x h_y}{\pi} e^{-\left[h_x^2 x^2 + h_y^2 y^2\right]}$$
(10)

Sachant que:

$$h_x^2 = \frac{1}{2\sigma_x^2}$$
; $h_y^2 = \frac{1}{2\sigma_y^2}$ (11)

Les grandeurs h_x et h_y se déduisent donc expérimentalement.

De la formule (10), on peut en déduire que le domaine de dispersion des coordonnées du centre des charges électriques varie en décrivant une ellipse dont l'équation est donnée par:

$$h_x^2 x^2 + h_y^2 y^2 = \lambda^2$$
(12)

L'expression (11) peut être reformulée comme suit:

$$\left(\frac{x}{\lambda/h_{x}}\right)^{2} + \left(\frac{y}{\lambda/h_{y}}\right)^{2} \le 1$$
(13)

Fig. 4: Le générateur d'énergie nouvelle et renouvelable (en vert) se trouve à l'intérieur de l'ellipse, après application de la théorie du centre de répartition des charges électriques

5. CONCLUSION

Les résultats obtenus montrent que, la charge électrique est une variable aléatoire, donc les coordonnées du centre de leur répartition sont des grandeurs aléatoires ou simplement des variables aléatoires et suivent une distribution normale.

Selon la relation (13), il s'ensuit que le centre de répartition varie régulièrement et décrit une ellipse.

Si le centre de répartition des charges se trouve dans l'ellipse (Fig. 4), alors les pertes en énergies électriques dans le réseau industriel seront minimales.

Les résultats de l'étude montrent que les ateliers de fortes puissances (grande section de conducteurs, dont coût important) ont un gain en longueur de câble considérable.

L'emploi de la technique du centre de répartition des charges influence considérablement l'évaluation technico-économique de la variante d'électrification de l'industrie en question (réduction du capital d'investissement).

REFERENCES

- A. Ould Mohamed Yahya, A. Ould Mahmoud et I. Youm, '*Etude et Modélisation d'un Générateur Photovoltaïque*', Revue des Energies Renouvelables, Vol. 11, N°3, pp. 473 483, 2008.
- [2]. T. Mrabti, M. El Ouariachi, K. Kassmi, F. Olivié et F. Bagui, 'Conception, Modélisation et Réalisation d'un Système Photovoltaïque de Moyenne Puissance', Revue des Energies Renouvelables, Vol. 11, N°4, pp. 567 – 575, 2008.
- [3] M. Ilic, F. Galina and L. Fink, 'Power System Restructuring: Engineering and Economics', Kluwer, Norwell, MA, 1998.
- [4] Groupe des écoles des mines France, 'Décisions et Prévisions Statistiques', http://tice.inpl-nancy.fr/modules/unit-stat/chapitre2/index.html#

- [5] S. Abdelkader, 'Transmission Loss Allocation in a Deregulated Electrical Energy Market', Electric Power Systems Research, Vol. 76, N°11, pp. 962 – 967, 2006.
- [6] P. Pirotte; 'Transport et Distribution de l'Energie Electrique', Atelier en Hydroélectricité, Liège, Avril 1993
- [7] N. Hamrouni and A. Chérif, 'Modelling and Control of a Grid Connected Photovoltaic System', Revue des Energies Renouvelables, Vol. 10, N°3, pp. 335 344, 2007.
- [8] P. Lagonotte, 'les Lignes et les Câbles Electriques', Edition Hermès.