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Abstract

Differential Evolution (DE) and the Particle Swa@ptimization (PSO) are two evolutionary algorithms
that confirmed their efficiency in resolving compl@roblems. In this paper, we intend to adopt these
algorithms to resolve a complex inventory managemesblem, known in the literature by the transsigmt
problem. This problem concerns network of collabivearetailers selling items and they collaborate b
exchanging items between them. The transshipmeittigm consists in deriving the optimal replenishtnen
quantity, for each retailer, while a transshipmpaoticy is adopted. A huge body of literature wotthas
addressed this problem where several configuratio@snvestigated. A few of them has addresseantlié-
item and the multi-location configuration becau$ét® complexity. We focus in this paper on thigrggex
configuration and we resolve it by the PSO and Dgorithms. Secondly, we compare between the
performances of these algorithms according to @fsetiteria. Thirdly, we analysis the impact oéthtudied
transshipment parameters on the inventory systeforpgance measures.
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1. Introduction

Inventory management aims to satisfy demands wihdémizing inventory performances which are
generally expressed in terms of profit or cost fioms. When companies evolve in an uncertain and
competitive environment, this objective becomesdh&ry be achieved. Consequently, many inventory
flexibility techniques are practiced in order tgpeowith these constraints and they help companieshieve
their primary objective. The substitution and thansshipment are two well-known inventory flexityili
techniques largely practiced in industry. The fashsists to replace the unavailable items byradtéres ones
having the same functionalities. However, the sdammsists to transfer the items from locationseoess to
ones in need. These two flexibility techniques hefpmpanies to improve their fill rate and to reduce
simultaneously, their inventory cost. The transsi@pt is hugely practiced in many domains as sparts p
and fashion items sold in several locations. Gdiyerthese kinds of items are replenished from diepp
where lead times are expressed in terms of weekmanths, and transshipment is practiced to serve
customers requiring, from a location, items whicé aut of stock. For example, when a customer Idoks:
specific item from ‘Zen la Soukra’ and this itermigt of stock in this location, then the requirtsr could be
transshipped from ‘Zen Manar 2’ where the itenmigkcess. So, the customer demand is satisfiegrdii
in ‘Zen la Soukra’ is improved and the inventoryst@f 'Zen Manar 2’ is reduced. The transshipment
problem has been studied since 1965 where sevenafigarations, parameters and approaches are
investigated. The multi-item transshipment variarntonsidered as a complex problem and there few af
works that treated it. Generally, these works fedugnainly on the two-location or the two-item
configurations and they looked for a transshipmaoiicy for all items simultaneously. In this papere
focused on the multi-location and the multi-itenmfiguration.

Our contributions here are threshold: first we Eddthe multi-location and multi-item transshipment
problem considering periodic review and we formeilite studied problem, second we resolve the proble
with PSO and DE and we compare between their pagfoces and we study the impact of transshipment and
uncertainty on the inventory system performance.

The rest of the paper is organized as follows: gheond section presents a literature review of the
transshipment. in the third section, we presensthdied problem and its formal model. The fought®n is
dedicated to the meta-heuristics algorithms PSODR#a@Nd their application to resolve the studiedbpgm
and finally the fifth section is related to expeeintation.

2. Literaturereview

The transshipment problem consists to derive tht@map replenishment quantities where transshipment
policy is adopted, has been studied. So, many gordtions, parameters and approaches are investigatd
many transshipment policies are identified. Patersbpal., 2011 overviewed works related to transsieint
problem and they proposed a classification base@ sat of criteria linked to: replenishment pararst
transshipment policies and environmental parameférsy identified two classes of works accordinghe
transshipment policies: the reactive transshipraedtthe proactive one in Seidscher et al., 2018.r&hctive
is triggered once the demands are observed anbb¢htions in need and other in excess are idedtifie
contrast, the proactive transshipment is startddréghe realization of demand and it aims to rieihigte
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stock in order to avoid a possible shortage. Tweashs of works are identified according to numbker o
locations involved: the two-location and the miditation transshipment problem. The first strearopasl
exact methods in order to derive the optimal inegntdecisions. Krishnan and Rao, 1965 are the fiirst
studied the two-location transshipment problem.yTtheveloped a single period model aiming to minaran
inventory cost function expressed in terms of haddind shortage costs. Since that, many resedaorhised

on this stream and investigated many configuratiémsong recent ones, we quote Olsson F. in 201%, wh
considered the transshipment lead times for twatlon inventory system adopting continuous revigwin
Yao et al., 2016 studied the two-location transstapt problem with a single replenishment, at thgirb@ng

of a season, while reactive transshipment is pragdtduring the season. Feng et al., 2019 studiedwb-
location transshipment problem in a competitiveterhand with dynamic demand information’s. Theoset
stream of works focused on the multi-location cgafation and it adopts simulation-based methodietove
approximate solutions proposed by KOCHEL, P.,1988 Kochel, P. et al., 2005. The meta-heuristic is a
simulation-based optimization approach which iselydadopted to resolve complex problem as the multi
location problem considering uncertain demands.oMia 2008 resolve the transshipment problem wiitbd
schedules with a genetic algorithm. Hochmuth kochel, 2012 resolve the multi-location transshipme
problem with many realistic parameters with pagtislvarm optimization (PSO) Algorithm. Danloup et al
2018 compared the performances of two meta-hewsistpplied for the transshipment problem: Local
Neighborhood Search and genetic algorithm. All tentioned works above, focused mainly on the single
item configuration. Few of works have interestedha multi-item configuration. They investigated thre
two-location network with periodic reviewing or thaulti-location configuration with continuous rewiing.

In this paper, we focus on the transshipment probler multi-location and multi-item configuration
considering uncertain demands. We aim to resoleesthdied problem with meta-heuristic approach. We
compare between the performances of two algorittiPasticle swarm optimization (PSO) and Differential
Evolution (DE), according to a set of criteria.

3. Problem description

We study an inventory system composed of N locatisgelling many products. At the beginning of the
period, these locations are replenished from a comsapplier and over the period demands are obdenve
satisfied. At the end of the period, a locatiorcbild be in excess related to product Pk and il hieePm.
However, location Lj could be in need for Pk anaiktess for Pm. Transshipment, from Locations Lijtof
Pk units, corrects Pk shortage at Lj and it redubesPk holding cost at Li. Here, we consider tixed
transshipment cost. The goal is to determine tlmsshipped quantities between locations and the
replenishment quantities of products at each lonatiptimizing a profit function. In order to introde our
studied problem, we present an illustrative exampl®wn by Figure 1, of three locations L1, L2 dr&l
selling two products P1 and P2. P1 is in needdt3)1, in excess (+4) at L2 and in need (-2) atti8wever,
P2 is in excess (+4) at L1, in excess (+3) at L& enneed (-6) at L3. Shortages at L1 and L3 cdagd
corrected by transshipping items from L1 (P1) agdR1, P2).

Supplier

(-2)

. =
(-8)

Replenishment
4 Transshipment
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Fig. 1. lllustrative example of three locations
3.1.Notations

Throughout this paper, we adopt the following notat

. Indexes:

i index of locationi € {1,2,...,N }.

k index of productk € {1,2,3, ..., K}.

. Parameters:

Pk The unit selling price of the produktat locationi.

rf The shortage unit coef productk at locationi.

sk The salvage unit cost of prodijcat locationi .

ck The replenishment unit cost productk at locationi .

tcﬁ} The transshipment unit cost between locatibaad j for productk
Dk The demand of thproduct k at location i.

f(DY) The probability density function of the demandlw product k at location i.
. Performance measure functions

m(X, D) The total profit function

TC(X,D) The total Inventory cost

TR(X,D) The total revenue generated before transshipmetignn.

TP(X,D) The total transshipment profit
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3.2.Problem formulation

n(X,D)= TR(X,D)—-TC(X,D) + TP(X,D) o)

TRE,D) = ) pf xmin{Df, v} @)
i=1 k=1
N K N K N K

TC(X,D) = chf X Y +Zzsf X (¥f—DF)" + er{‘ x (DF —vF)* 3)
i=1 k=1 i=1k=1 i=1 k=1

TP(X,D) =ZZ(Z(S +BF th)x'r“) @
Z < (pf-vf) vje(2. .. N}vke{12, . K} (5)

ZT;; < (Y*-pf)* vie{12.,N},Vk €{12,.,K} (6)

4. DE and PSO for the Transshipment problem

Here, we resolve the studied problem descriptedfandulated above by two Evolutionary Algorithms,
Differential Evolution (DE) and Particle Swarm Qptzation (PSO), that confirmed their efficiency in
resolving complex problem.

4.1.Differential Evolution

Differential Evolution (DE) was introduced for tffiest time by Storn and Price, 1997, as a stocbastd
population-based optimization algorithm. DE wasvebto be the fastest evolutionary algorithm (EAJl &
was used for solving nonlinear optimization problewer continuous spaces. DE has been shown having a
good convergence and very simple but very powdduloptimizing continuous functions. As many others
evolutionary algorithms, DE uses three operatiom#tation, crossover and selection that guide tH&iduals
of (population) to move toward a global optimum. ¥&s used to solve diverse optimization problengsitin
has proved his performance. The DE algorithm residipends enormously of the mutation strategy hed t
control parameters: the population size (NP), tlessover operator (CR) and the differential weifgtttor
(F).

The general structure of DE algorithm is composgdhle steps shown in figure 2. The steps are egdcut
sequentially till stop continuation is met. Thaseps are:
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Initialization

Termination |«

Fig. 2. DE general structure

< Initialization: DE starts with initialization of ¢hpopulation by producing NP individuals in the ldeon
space domain. Each individual Xi is presented byeetor of D values (each value associated to one
variable of the problem dimension):

Xi={x}, x7, ..., xM} i €{1, 2, ...., NP}, where N is the number of locations

x = (x!

i FE . .
| x[- ,x{[‘ ), where k is the number of items.

* Mutation: After the initialization and in each geaton g, DE uses the mutation operation to craate

. . . . . ) 2
mutant vector Vi,g associated to each target vexitgr (Xi at generation g), Vl,gﬂ{’ilg, Vi“g, ..... ,

Vi[,)g} withi € {1, 2, ...., NP} and ¢ {1, 2, ...., G}, (G is the maximum number of genérat There are

different DE variants identified according to midat operation formula. Here, we are limited te BE
best/1 having the following mutation formula:

Vie = Xpestg T F = (X.r;.c _X.r:.G) ()
e Crossover operation: The crossover step, as pabbytthe formula below, is used to introduce some
diversity in the population during each generatioarder to look for the optimum. In this phase DE

2
produce, at each generation g, a trial vector U{,lg%-g, Lli“g, uiDg} associated to each individual
Xi,g. The binomial Version of the crossover opematis presented below:

®)
CR represents the crossover parametergq®1]), Rand is a random integer value with Rafd.D].
e Selection: During this step, at the generation gHake to decide which vector to keep between tlire pa
Xg and Ug depending on their fithess values, ferghneration g+1.

(©)
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This selection formula is in case of maximizationtgem.

The algorithm restarts the cycle from the mutapbase until the stop condition is reached.

The main DE parameters are:

e The Cross-over probability (CR).
« The differential weight factoi)
e The population size (NP).

Table 1. DE algorithm

DE algorithm (BEST/1)

1. P (NP)< Initialize Population
2. Evaluate each individual of P laygorithm 2
3. While (Stop-condition not met) Do

4. Fori=1to NP
5.  Radom choose {individuabnd individuaf} from P
6. Individuakes; €LoOK for the best individual from P
7. R €& Randominteger [0, N*K]
8. For j=1to (N*K)
a.  CrossoverProbabilit¢ random()
b.  If (crossoverProbability < CR or R==)

Candicatg&  Individuabes,;+ W * (individuak ; — individuab,)
c. Else

Candidatg- individual
9. Endfor

10. Evaluate candidate fitness by algorithm 2
If (Candidate Fitness > Individu&litness)T hen
Individua} €< Candidate
11. Endfor

12. End while

4.2.PSO algorithm

The Particle swarm optimization (PSO) is one ofrtiest known population-based algorithms propdsed
Eberhart and Kennedy,1995. Since its appearaaeera improvements were introduced to the bagisioe
and was used for solving global optimization profde The basic operation of Particle Swarm Optinorat
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consists in searching for the optimal solution gearch space D (number of dimension) where eaticlpa
‘" is characterized by its position (Xi) and itelocity (Vi) which are represented as follows:

Xi={xaf, x%, ..., 2N}, i €{1,2, ..., NP}. Where N is the number of locations

Xf' = (xgl,sz, }\1]}“) ,where kis the number ofitems
Each particle must also keep track of its bestipres/position R.= (ps, P2, Po) as the best among all the
particles of the populationgRst= (P, PPe). At each iteration, each particle in the popolatadjust its
velocity and calculate its new positions vectongshe best fitness in the population accordintp¢o
following two formulas:

Vig = Wy + 011y (:IrJ!.d - X:‘d:) +Caly (Iuﬂd - X:‘d) (10)
Xig = Xig T Vig (11)

Where c1 and c2 are the acceleration constantsvasidhe inertia weight parameter. rl and r2 ame tw
random generated numbers in the interval [0, 1daling to the uniform law.

Table 2. PSO algorithm

PSO algorithm

1. P (NP)< Initialize Population
2. While (Stop-condition not met) Do

3. Update pBest of each particle
4. Update gBest of the population
5. Fori=1toNP
a. Candidat& Particle (copy Particlein Candidate)

b. Calculate new_Velocity for Candidate according to
(10)

c. Calculate new_Location for Candidate according
to (11)

d. Evaluate Candidate fithess by algorithm 2
e. if (Calculate Fitness > Particleitness) Then
Particle<Candidate
6. Endfor

7. Endwhile
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Using the below expected profit algorithm, we estienthe profit generated by the system for a sigecif
combination of a predetermined inventory vector arsgt of generated demand vectdiss .......... s

Table 3. Expected profit algorithm

Expected profit algorithm

1.
2.
3.

Expected_profi&initilize_to_zero()

X inventory vector

For i= 1 to Number of Simulation (NS)

D€ generate_Demand ()

Expected _prof€& Expected _profit AP{X, D)

End for

Expected _profi€& Expected _profit /NS

Return Expected _profit

5. Experimental Results

In this experimental section, we focus on threéediint problem configurations of transshipment prob
identified according to the number of items. We mterested in four locations selling 2, 4 or 8nite
Characteristics of the studied configurations assented in Appendix A.

We note here, that in addition to the uniform disttion of demand mentioned in table 1, we used the
normal distribution with the same parameters.

5.1.Parameters settings

The parameters of the used algorithms are testdddmen et al., 2020 and summarized in the Talteibe

Table 4. List of used parameters for PSO and DE

DE Parameters

PSO Parameters

Parameter Best value Parameter Best value
CR 0.7 W 0.6
F 0.6 C1=C2 1.5
NP 30 NP 30*

N. generation

Stop stability condition*

N. genaat 900
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5.2.DEs and PSO comparison

We treated here 3 different problem configuratig@smodels) and we present below the results of
DE/Rand/1, DE/Best/1 and PSO showed in the taltaabel his table contains respectively the resuftthe
best and the average system fitness value realigeglach algorithm corresponding to the three diffier
configurations (4X2, 4X4 and 4X8).

Table 5. DE/Rand/1, DE/Best/1 and PSO results

Best individual results Average population results
Best_4X2 Average_4X2

480 500
475 — 450
470 A

o 400
465 7

p

460 350
455 300
450
445 250
440 200

e RN /] e DE /BeSt/1 PSO e RaN(/] e DE/Best/1 PSO
Best_4X4 Average_4X4
950 900
850
900 800
850 750
700
800 650
600
750
550
700 500
AN MO NN ATSOMN OO N0 ATNEO MW NN - TR OMOVUN N0 =ETEOMOONNOeETNO MO O NN
PESENERNSSTRR33RREE 88058359592 PSR ERGYERRBIRARIBAZEISARIRLEE
5333333333 2233283388833
e DE/RaNG/1 s DE/BesSt/1 PSO e DE/RANG/1  smmmmDE/Best/1 PSO
Average 4X8
Best 4X8 1650

1600

2500 1550
1500

2000
1450

e —

1500 wemiS 1400 /

1350

1000 1300
1250
500 1200

R EEEEEE LSS F R - F 8- — —_
SRARIRSORNE®aE88E3RRER388RER, DE/Rand/1 DE/Best/1 PsO
SEHSERIRS3588Y

= DE/Rand/1 ====DE/Best/1 PSO

The curves show that PSO always takes the top amupa DE in all models in the case of the best
individual results, which proves the advance of Re@pared to DE variants. On the other hand, tleeaame
value achieved by individuals of PSO populatioalinost lower than the others of DE algorithms.

System performance studies: We study in this sedtie impact of two different parameters (fixedtcos
transshipment and the demand uncertainty) on teeesyperformance. We chose also to use two demand
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types distribution (uniform demand distribution andrmal demand distribution). We present below the
results of these experimentations

5.3.Demand Impact on system performance

We present below the results of the study of thpaich of the variation of normal and uniform demand
distribution on the system performance using DEARBDE/Best/1 and PSO:

Normal demand uncertainty impact on system

Impact of Uniform Demande uncertainty on
performance

system performance
800
700

900

600 #00

= l'll]

300 I] .~, | 00

200 h | 500

e | 400

& & e s o |

& .\\{@ _ \(.\@q‘ & N v N

N NG interval=2
interval=4
& & interval=6
& interval=8
~ interval=10
interval=12

EPSO mDE/Best/1 DE/Rand/1 WPSO WDE/Best/1 M DE/Rand/1

Fig. 3. Impact of normal demand on system perfoaaan Fig. 4. Impact of uniform demand on system pmadace

Figure 3 and 4 show that the performance of the BSfways better than that of the DE even with the
variation of the uncertainty of the demand in botiimal and uniform cases. Results shwo also th#B&dE
/1 proves to be better than DE/Rand /1 in all eixpentations. Our experimentations prove also that t
impact of normal and uniform demand uncertaintysgstem performance is very remarkable; we notise al
a rapid decrease of the system profit in the cds®inal demand faster than in the case of unifdemand,
this proves that our system depends directly ométere of demand and its domain: The more thertaiogy

of the demand increases the more it causes a decoédhe system performance and affects the restiie
fitness function regardless of the algorithm.

5.4.Transshipment Impact on system performance using&dt1

We present below the results of the study of thasich of the transshipment on system performancase
of normal and uniform demand distribution uncetiawariation using DE/Best/1.:

System performance in case of Gaussian Demand with System perormance in case of Uniform Demande
transshipment and without transshipment with and without Transshipment

DT 11711

interval=2 interval=4 interval=6 interval=8 interval=10 interval=12 Ecart 2 Ecart 4 Ecart 6 Ecart 8 Ecart 10 Ecart 12

m with t i t without t

W With transshipment 1 Without transshipment
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Fig. 5.Impact of transshipment on system performancese of  Fig. 7. Impact of transshipment on system performancase of
normal demand uniform demand

Figure 6 and 7 show that the impact of transshignietboth cases normal and uniform demand, oresyst
performance is very remarkable; we notice alsomdralecrease of the system profit when the demand
uncertainty increases. Our experimentations shaw al very clear effect of the transshipment onesyst
results which proves its added value.

We present below the gain realized by transshipmsimig normal and uniform demand distribution using
DE/Best/1:

Impact of the transshipment with the variation Impact of the Transshipment with the variation of
of gaussian demand ' uniform demand

30% [ 70%
|

25% . 60%
|

50%
20% .

! 40%
15% t

! 30%

10% ' 20%
|

5% 10%

0% 0%

interval=2 interval=4 interval=6 interval=8  interval=10 interval=12 Ecart 2 Ecart4 Ecart 6 Ecart 8 Ecart 10 Ecart12

Fig. 8. Gain made by transshipment in case of normal deeima ~ Fig.9. Gain made by transshipment in case of uniformashem

Figure 8 and 9 show the gain realized when usiagsshipment, in both cases normal and uniform
demand, on system performance is very important.ndfeee also that the gain realized in case ofarnif
demand is more important compared to the normabdensase.

Conclusion

In this paper, we studied the multi-location andltisitem inventory management considering lateral
transshipment. we proposed two evolutionary algor# (DE/Rand/1, DE/best/1 and PSO), to resolve the
studied problem. The model considered many item&twhould be transshipped between locations. We
proposed a simulation algorithm to derive the etgacprofit value of a replenishment vector. our
experimental study shows that the PSO algorithnfop@s better results than those of DEs. We stuttied
uncertainty demand effect on the system performavweenoted that the transshipment impact on thtesys
performance is more significative for high leveld#fmand uncertainty. Our actual research couldktended
by:(1) considering the fixed cost of transshipmantl (2) integrating a substitution flexibility tagfue
allowing to customer to replace their first choiyean alternative one when it is out of stock.
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Appendix A.

Configurations data from Noomen et al., 2020.

Location L1 L2 L3 L4
L 15 15 14 9
Eh 4 4 6 4
P1 ry 8 5 4 5
cf 10 10 9 9
Dy u[12,26]  u[10,20] u[5,36]  u[15, 35]
L 17 17 18 11
P2 Eh 5 5 5

ry 6 6 6

13



Noomen et al./ Information Processing at the Rigkge Journal 00 (2018) 000—000

14
cf 12 12 13 11
Dy u[13,26]  u[12,20] u[4,36]  u[16, 35]
re 15 15 14 9
57 4 6 4
P3 ry 5 4 5
= 10 10 9 9
Dy u[12,26]  u[10,20] u[5,36]  u[15, 35]
B 17 17 18 11
57
P4 r
cff 12 12 13 11
Dy u[13,26]  u[12,20] u[4,36]  u[16, 35]
i 15 15 14 9
57 4 6 4
P5 Iy 4 5
c; 10 10 9 9
Dy u[12,26]  u[10,20] u[5,36]  u[15, 35]
L 17 17 18 11
57 5
P6 ry 6
c; 12 12 13 11
Dy u[13,26]  u[12,20] u[4,36]  u[16, 35]
B 15 15 14 9
5 4 6 4
P7 Iy 4 5
G 10 10 9 9
D u[12,26]  u[10,20] u[5,36]  u[15, 35]
re 17 17 18 11
57
P8 ry
= 12 12 13 11
Dy u[13,26]  u[12,20] u[4,36]  u[16, 35]




