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Abstract 
In this paper, we study two-dimensional spin polarized transport in semiconductors. Based on the some semiclassical 
considerations and taking  account of the spin relaxation. We determined the relationship of the polarization as a function of 
time and the distance. And we have also established the relationship of the drain current in a 2D channel of a transistor called 
"spin-FET" where it was   matter to highlight this type of transport. 
  This study was crowned with a numerical study of the characteristics of  spinFET 2D transistor  depending on the external field 
and internal characteristics of the semiconductor. 
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1. Introduction 
The study of spin-polarized transport across interfaces is a 
subject of long history [1, 2]. The recent advent of 
semiconductor-based electronic devices at the nanoscale has 
revived the interest in transferring, controlling and detecting 
spin currents. This research area has been termed spintronics 
due to the exciting possibility of future, successful spin-based 
electronic technology [3]. Nevertheless, spintronics is 
interesting as well for fundamental physics, both 
experimentally and theoretically, as its basic constituent—the 
spin—is of quantum nature only. 
 In the ideal situation where spin (or its projection along a 
direction) is conserved, spin current is simply defined as the 
difference between the currents of electrons in the two spin 
states. This concept has served well in early study of spin-
dependent transport effects in metals. The ubiquitous 
presence of spin-orbit coupling inevitably makes the spin 
non-conserved, but this inconvenience is usually put off by 
focusing one’s attention within the so-called spin relaxation 
time. In recent years, it has been found that one can make 
very good use of spin-orbit coupling, realizing electric control 
of spin generation and transport [3, 4, 5, 6, 7, 8, 9]. The 
question of how to define the spin current properly in the 
general situation therefore becomes urgent. 
 
 2. Hamiltonian And Theoretical Approaches 

In semiconductor spintronic structures, where spin 
is carried by electrons and/or holes, the spin dynamics is 
controlled by magnetic interactions. Some of these are 
surveyed below.  
 
-Interaction with an external magnetic field.  
  An external magnetic field  ܤሬԦ exerts a torque on a magnetic 
dipole and the magnetic potential energy is given by Zeeman 
term  

                            ܷ ൌ כఓಳ
ଶ
.Ԧߪ  ሬԦ                         (1)ܤ

 where  g* is the effective  g -factor, and σr  represents a 
vector of the Pauli spin matrices, used in the quantum-
mechanical treatment of spin ½, see [10]. The interaction (1) 
leads to the spin precession around the external magnetic 
field. This interaction is important in all system where a 
magnetic field is present. Moreover, fluctuations of  ܤሬԦ could 
lead to noise contributing to spin relaxation.  

 -Interaction with magnetic impurities, nuclei and other spin 
carriers.  
  An electron located in a semiconductor experiences 
different kinds of spin-spin interactions including direct 
dipole-dipole interactions with nuclear spins and other (free 
and localized) electrons, and the exchange interaction. The 
latter, in fact, is the result of the electrostatic Coulomb 
interaction between electrons, which becomes spin-
dependent because of the Pauli exclusion principle [10]. 
Usually, at room temperatures in sufficiently clean, low-
doped non-magnetic semiconductors these interactions are 
not very important.   
  
3. Spin-orbit interaction  
  The spin-orbit (SO) interaction arises as a result of the 
magnetic moment of the spin coupling to its orbital degree of 
freedom. It is actually a relativistic effect, which was first 
found in the emission spectra of hydrogen. An electron 
moving in an electric field, sees, in its rest frame, an effective 
magnetic field. This field, which is dependent on the orbital 
motion of the electron, interacts with the electron’s magnetic 
moment.   

The Hamiltonian describing SO interaction, derived 
from the four-component Dirac equation [11], has the form   

ௌைܪ                       ൌ
మ

ସమమ
൫ሬሬԦ ൈ ܸ൯.  Ԧ                (2)ߪ

where  m  is the free electron mass,  rp  is the momentum 
operator, and   is the gradient of the potential energy, 
proportional to the electric field acting on the electron. 
When dealing with crystal structures, the spin orbit 
interaction, Eq. (2), accounts for symmetry properties of 
materials. Here we emphasise two specific mechanisms that 
are considered to be important for spintronics applications. 
The Dresselhaus spin-orbit interaction [1] appears as a result 
of the asymmetry present in certain crystal lattices, e.g., the 
zinc blende structures. For a two-dimensional electron gas in 
semiconductor heterostructures with an appropriate growth 
geometry, the Dresselhaus SO interaction is of the form  

ܪ                  ൌ
ఉ

ሺߪ௫௫ െ  ௭ሻ.                      (3)௭ߪ

Here,  β  is the coupling constant.   
  The Rashba spin-orbit interaction [13] arises due to the 
asymmetry associated with the confinement potential and is 
of interest because of the ability to electrically control the 
strength of this interaction. The latter is utilized, for instance, 
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in the Datta-Das spin transistor [13]. The Hamiltonian for 
the Rashba interaction is written [38] as  
ோܪ                        ൌ

ఈ

ሺߪ௫௭ െ   ௫ሻ,                  (4)௭ߪ

where α  is the coupling constant. Other possible sources of 
spin-orbit interaction are non-magnetic impurities, phonons 
[14], sample inhomogeneity, surfaces and interfaces. In some 
situations these could play a role in spin transport and spin 
relaxation dynamics. 
Consider the two-dimensional channel of a Spin Field Effect 
Transistor (SPIN-FET) in the x-z plane with current flowing 
in thex-direction. An electron’s wavevector components in 
the channel are designated as kx and kz, while the total 
wavevector is designated as kt. Note that ݇௧ଶ ൌ  ݇ଶ   ݇ଶ  . 
The gate terminal induces an electric field in the y-direction 
which causes Rashba interaction. The Hamiltonian operator 
describing an electron in the 
channel is 
 

ܪ ൌ ೣమାమ

ଶכ ሾIሿ  ሾܸீߙ ሿሺߪ௫௭ െ  ௫ሻ                  (5)௭ߪ
 
where the p-s are the momentum operators, the σ-s are the 
Pauli spin matrices and [I] is the 2×2 identity matrix. Since 
this Hamiltonian is invariant in both 
x- and z-coordinates, the wavefunctions in the channel are 
plane wave states ݁ሺೣ௫ାሻ. Consequently, in the basis of 
these states, the Hamiltonian is 
 

ܪ ൌ 
మ

మ

ଶכ  ሾܸீߙ ሿ݇௫ െߙሾܸீ ሿ݇௭

െߙሾܸீ ሿ݇௭
మ

మ

ଶכ െ ሾܸீߙ ሿ݇௫
              (6) 

Diagonalization of this Hamiltonian yields the eigen energies 
and the eigen-spinors in the two spin-split bands in the two-
dimensional channel: 

ܧ ൌ
మ

మ

ଶכ െ ሾܸீߙ ሿ݇௧               ሺlower band)

௨ܧ ൌ
మ

మ

ଶכ  ሾܸீߙ ሿ݇௧             ሺupper band)
     (7) 

 
And  

     
ሾߖሿ ൌ ቂߠݏܿߠ݊݅ݏቃ             (lower band)

ሾߖሿ௨ ൌ ቂߠݏܿߠ݊݅ݏቃ             ሺupper band)
            (8) 

where ߠ  ൌ   ሺ1/2ሻܽ݊ܽݐܿݎ ሺ݇௭/݇௫ሻ. Note that an electron of 
energy E has two different wave vectors in the two bands 
given by ݇௧

ሺଵሻand ݇௧
ሺଶሻ. 

We will assume that the source contact of the SPINFET is 
polarized in the+x-direction and injects +x-polarized spins 
into the channel under a source- 
to-drain bias. We also assume that the spin injection 
efficiency at the source is 100%, so that only +x-polarized 
spins are injected at the complete exclusion of −x-polarized 
spins. An injected spin will couple into the two spin 
eigenstates in the channel. It is as if the x-polarized beam 
splits into two beams, each corresponding to one of the 
channel eigenspinors. This will yield: 

         
ଵ
√ଶ
ቂ11ቃ ൌ ଵܥ ቂ

ߠ݊݅ݏ
ቃߠݏܿ  ଶܥ ቂ

െܿߠݏ
ߠ݊݅ݏ ቃ 

+x- polarized                                                       (9) 

where the coupling coefficients C1 and C2 are found by 
solving Equation (9). 
The result is 

ଵܥ  ൌ ,ଵ ሺ݇௫ܥ ݇௭ሻ  ൌ  ߠሺ ݊݅ݏ    4ሻ/ߨ 
ଶܥ               ൌ ,ଶሺ݇௫ܥ ݇௭ሻ ൌ െܿݏ ሺߠ    4ሻ   (10)/ߨ 
 
Note that the coupling coefficients depend on ݇௫ and ݇௭. 

At the drain end, the two beams recombine and 
interfere to yield the spinor of the electron impinging on the 
drain. Here, we are neglecting multiple reflection effects 
between the source and drain contacts in the spirit of ref. [1]. 
Since the two beams have the same energy E and transverse 
wavevector ݇௭ (these are good quantum numbers in ballistic 
transport), they must have different 
longitudinal wavevectors ݇

ሺଵሻand ݇
ሺଶሻ  since ݇௧

ሺଵሻ ് ݇௧
ሺଶሻ. 

Therefore, these two beams have slightly different directions 
of propagation in the channel. In other words, the channel 
behaves like a “birefrigent” medium where waves with anti-
parallel spin polarizations travel in slightly different 
directions. 
Hence, the spinor at the drain end will be: 
ሾߖሿௗ ൌ
ଵܥ ቂ

ߠ݊݅ݏ
ቃߠݏܿ ݁

ቀ
ሺభሻାௐቁ  ଶܥ ቂ

െܿߠݏ
ߠ݊݅ݏ ቃ ݁ቀ

ሺమሻାௐቁ 

ൌ ݁ೖೈ ൦
 ݊݅ݏ ቀߠ  

ߨ
4ቁ ݁ߠ݊݅ݏ


ሺభሻ   ߠሺ ݏܿ  ݁ߠݏ4ሻܿ/ߨ 

ሺమሻ

 ݊݅ݏ ቀߠ  
ߨ
4ቁ ݁ߠݏܿ


ሺభሻ െ  ߠሺ ݏܿ  ݁ߠ݊݅ݏ4ሻ/ߨ 

ሺమሻ
൪ 

(11) 
Where L is the channel length (distance between source and 
drain contacts) and W is the transverse displacement of the 
electron as it traverses the channel. 
Since the drain is polarized in the same orientation as the 
source, it transmits only +x-polarized spins, so that spin 
filtering at the drain will yield a transmission probability |T|2 
where T is the projection of the impinging spinor on the 
eigenspinor of the drain. It is given by 
 
Tൌ ଵ

√ଶ
ሾ1 1ሿ ൈ 

൦
 ݊݅ݏ ቀߠ  

ߨ
4ቁ ݁ߠ݊݅ݏ


ሺభሻ   ߠሺ ݏܿ  ݁ߠݏ4ሻܿ/ߨ 

ሺమሻ

 ݊݅ݏ ቀߠ  
ߨ
4ቁ ݁ߠݏܿ


ሺభሻ െ  ߠሺ ݏܿ  ݁ߠ݊݅ݏ4ሻ/ߨ 

ሺమሻ
൪ ݁ೖೈ 

 
ൌ

݁ೖೈ ቂ݊݅ݏ ଶ ቀߠ   గ
ସ
ቁ ݁

ሺభሻ  ߠଶ ሺݏܿ 

݁ߠݏ4ሻܿ/ߨ                                                   
ሺమሻቃ   (12)                    

Here, we have assumed 100% spin filtering efficiency. 
Therefore, 
 

|ܶ|ଶ ൌ ସݏܿ ቀߠ  
ߨ
4ቁ ฬ1  ସ݊ܽݐ ቀߠ  

ߨ
4ቁ ݁

ቀ
ሺభሻି

ሺమሻቁฬ
ଶ
 

 

ൌ ସݏܿ ቀߠ   గ
ସ
ቁ  ସ݊݅ݏ ቀߠ   గ

ସ
ቁ 

                                            ଵ
ଶ
 ሻ      (13)ܮߐሺݏሻܿߠሺ2ݏܿ
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where ߆  ൌ  ݇
ሺଵሻ െ ݇

ሺଶሻ. 
 
From Equation (8), we get that: 
 

 ݇
ሺଵሻ െ ݇௧

ሺଶሻ ൌ െ ଶ୫כఈሾಸሿ
మ

 
 
 Expressing the wavevectors in terms of their x- and z-
components, we get: 

 ߆          ൌ
ିమౣ

ೇಸ൧ൣഀכ

మೖ
ሺమሻ ାଶሺ୫כሻమఈమሾಸሿ/ర

ቂ
ሺభሻି

ሺమሻቃ/ଶ
                    (14) 

Now, if α [VG] is small, then ൣ݇
ሺଵሻ െ ݇

ሺଶሻ൧/2 ൎ ඥ݇బଶ െ ݇௭ଶ , 
where ݇ ൌ √2mכE/. Substituting theseresults in Equation 
(14), we get 
 

 ߆             ൌ
ିమౣ

ుכೇಸ൧√మౣൣഀכ
య

ିሺ୫כሻమఈమሾಸሿ/ర

ට√ଶ୫כ/మିమ
          (15) 

The current density in the channel of the SPINFET 
(assuming ballistic transport) is given by the Tsu-Esaki 
formula: 
 

ܬ ൌ 
ௐ
 ଵ


ܧ݀  ௗೋ

గ
∞
 |ܶ|ଶሾ݂ሺܧሻ െ ܧሺܨ  ݍ ௌܸሻሿ    (16) 

                    
where q is the electronic charge, Wy is the thickness of the 
channel (in the y-direction), VSD is the source-to-drain bias 
voltage and f(η) is the electron 
occupation probability at energy η in the contacts. Since the 
contacts are at local thermodynamic equilibrium, these 
probabilities are given by the Fermi-Dirac factor. 
In the linear response regime when VSD → 0, the above 
expression reduces to 

ܬ ൌ మೄವ
ௐ

 ଵ

ܧ݀  ௗೋ

గ
∞
 |ܶ|ଶ ቂെ డሺாሻ

డா
ቃ         (17) 

This yields that the channel conductance G is 

ܩ ൌ ூೄವ
ೄವ

ൌ మௐ
గ  ܧ݀ ݇݀

∞
 |ܶ|ଶ ቂെ డሺாሻ

డா
ቃ(18) 

we finally get that the channel conductance is 

ܩ ൎ ܩ 
ଶݍ ௭ܹ

݄ߨ2 න න݀݇ܧ݀
∞


ቈ1

െ
ଶ݇௭ଶ

2mכE
൨ ሻܮߐሺݏܿ ቈെ

߲݂ሺܧሻ
ܧ߲  

4. Conclusion 
In this work we have studied the transport of two-

dimensional spin-polarized, we have established a relation 
giving the expression of the source-drain current as a function 
of the parameters of the semiconductor used, and the electric 
field across the control grid and polarization of injected spins, 
then we have calculated the associated transconductance G. 
This model is based on semiclassical consédérations with the 
holders of spin injected with ballistic trajectories inside the 
conduction channel. 
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