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Abstract 
       Theoretical investigation of the electronic structure of GaAs/AlAs quantum dots superlattices is presented. We use the 
envelope function approximation in connection with Kronig-Penney model to calculate the conduction band structure of 
the cubic quantum dot crystal. . We show that, when quantum dots are separated by a finite barrier and positioned very 
close to each other so that there is a significant wave function overlap, the discrete energy levels split into three-dimensional 
minibands. We can control the electronic structure of this artificial quantum dot crystal by changing theirs technological 
parameters, the size of quantum dots, interdot distances, barrier height, and regimentation. This type of structure provides 
electronic and optical properties very important that are different to that of bulk and quantum well superlattices. The 
proposed engineering of three-dimensional minibands in quantum dot crystals allows one to fine-tune electronic and 
optical properties of such nanostructures. 
Keywords: quantum dots, semiconductor superlattices, envelope function approximation  

1. Introduction 

     Recently low dimensional systems at nanometer scale  
have stimulated a new promising research in condensed 
matter. Mainly these structures opened a crossover 
between the physics of bulk condensed matter and few 
body systems.  The progress of experimental techniques 
have made feasible the possibility of quantum confinement 
of only few electrons, often referred as “man made 
structures” [1]. In particular, semiconductor quantum dots 
(QD) have many potential applications in various domains 
such in electronic devices, information processing and non-
linear optic.  
     Nanometer-sized semiconductor quantum dots can be 
grown in the Stranski-Krastanow mode using molecular 
beam epitaxy [2] or metal-organic chemical vapor 
deposition [3]. 
    The interest in quantum dot superlattices (QDS) 
structures combined system lies on the ability to tune 
optical transition energies by varying SL period as well as 
by changing QD parameters. Nowadays, the suitability of 
mid-infrared photodetectors was confirmed [4,5]. 
    In addition, it was shown that QDS together with their 
wetting layer modify significantly the energy structure in the 
case of GaAs/AlAs Therefore, in order to determine 
optimal design for applied purposes, an appropriate 
knowledge about their optical properties and electronic 
structures of combined QD/SL systems is fundamental. 
    The aim of this paper is to investigate the electron 
energy band structure in a 3D regimented array of QD 
semiconductors by means the envelope function 
approximation. The regimentation, namely spatial site 
correlation, along the three directions results in the grow  
of an artificial crystal, where quantum dots play the role of 
atoms. Such structure is then referred as a quantum dot 
crystal (QDC). As originally considered by [6], we paid our 
attention on simple cubic QDC consisting in very small 
(size about of 5–10 nm) GaAs quantum dots grown on 
AlAs and surrounded by AlAs cap layer.  

 
         In the next section, we outline the theoretical 
formalism used for calculating 3D energy minibands. It is 
followed by Section. III, which presents results of the 
numerical simulation and discussion. Our conclusions are 
given in Sec. IV. 
 
2. Analytical study       

      In order to simplify our analytical calculation, we 
restrict our analysis to simple structures formed by the 
periodic arrangement of cubic quantum dot, along the 
three axes yx, and z as shown in Fig (1.a). We also show 
in this figure the notations used throughout the rest of the 
article. Our goal in this section is develop a simple, almost 
analytical, formalism using the envelope function 
approximation, for carrier transport in QDC that would 
serve as a useful tool for experimentalists and materials 
growers. 
      Theoretical models for quantum dots within the 
envelope function approximation usually lead to a complex 
multidimensional Schrödinger equation, which needs to be 
solved using finite elements method, or plane wave 
expansion. Application of the pseudopotential methods for 
QDC is computationally challenging. 
      In our analyzis, we intersent to the conduction band of 
the GaAs/AlAs QDC. We this is done for several reasons. 
First of all, the most of the band gap discontinuity between 
GaAs and AlAs goes to the conduction band. Second, the 
potential energy minimum in the conduction band is 
located in Γ  point, which greatly simplifies the model and 
justifies our omission of carrier Bloch functions from 
consideration [7]. 
     The Schrödinger equation that describes the motion of 
a single electron in such a system can be written in the 
following form: 
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Here, the atomic structure of the host semiconductor 

enters the analysis as an effective mass *m . This parameter 
assumes different values in the quantum dot and the 
barriers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
FIG.1. Schematic structure of the cubic QDC 

 
The potential )(rV corresponds to an infinite sequence of 
quantum dots of size, yx aa , and za separated by the 
barriers of thickness, yx bb , and zb . We assume that it is 
written as a sum of three independent periodic functions of 
coordinates, yx,  and z  with periods of 

yx dd , and zd   

                 )()()()( zVyVxVrV zyx ++=                      (2) 

 where 
              0)( =ξξV    For      2/ξξξηξ ad ≤−             (3) 

            0)( VV =ξξ   For     2/ξξξηξ ad ≥−  

 with                     ξξξ bad +=                                      (4) 

Here ξη are the integer numbers and subscript ξ denotes 

a particular coordinate axis. This choice of potential allows 
us to separate the carrier motion along three coordinate 
axes. The 3D envelope wave function )(rF can therefore 

be presented as a product of three 1D eigenfunctions ξφ  

in the following way: 
           )()()(),,()( ,, zyxzyxFrF

zyxzyx nnnnnn φφφ==    (5) 

     The 3D Schrödinger equation also decouples in this 
case into three identical one-dimensional (1D) quantum-
well superlattices. 
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Here ξn  denote the quantum number. The total energy 

spectrum for the wave function )(rF is given by: 

                       
zyxzyx nnnnnn EEEE ++=,,                    (7) 

Where nE  are the eigenvalues of the one-dimensional 
Schrödinger’s equation. 
       For the chosen geometry of QDC and band offsets the 
carrier wave functions and energy spectrum are mostly 
determined by the nearest-neighbor interaction between 
dots separated by the potential barrier

0V . 

          The corner potentials induce only minor corrections, 
which are particularly small for the below-the-barrier states. 
This observation is important because the confining 
potential of Esq. (2) and (3) does not describe a simple 
QDC of a rectangular quantum dot surrounded by the 
potential barrier of the equal height.  
        In two dimensions, this situation is clear. Fig (2a) 
illustrates the two-dimensional confinement potential; with 
this configuration it is not possible to write the two-
dimensional potential as a sum of two independent one-
dimensional potential, and thus it is not possible to separate 
the x- and y-motions.   
 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG.2. (a) the rectangular cross-section confinement potential ; 
and (b)  an approximation form for the potential, suitable for 
decoupling the motion Note that the carrier states in quantum 
dots are mostly determined by interaction with nearest-
neighboring dots separated from each other by the potential V0 
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 However, a very loose approximation may be to write the 
potential as in Fig (2b) [8]. With this form, the potential 
does equal the sum of tow independent finite well 
potential. The approximation occurs in the corner region 
outside of the quantum dots where the two quantum well 
potential barrier heights V0 sum to give 2V0.  Similarly, in 
3D, there exist outer regions where the overlap of 1D 
potentials along each axes gives rise to a potential barrier of 
3V0. 
      The solution of Eq (1) with the potential of Eqs (2)   
and (3) has the form familiar from the Kronig–Penny 
model [9]. By using the transfer matrix method [10] and 
the boundary condition of Bastard [11], we arrive:   
 
For  0VE >ξ                                                              (8a) 
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  The effective masses *
wm  and *

bm used in Eqs. (8). and 
(10) depend on the crystallographic orientation of the 
quantum dot interfaces. Equations (8) and (10) allow us to 
calculate the carrier dispersion relation in the QDC: 
          
                 )()()()( zzyyxx qEqEqEqE ++=             (11) 

 Since for each given value of ξq there is an infinite 

number of solutions, we use the miniband index ξn to 

label the carrier energy. 
 
3. Numerical results  

         In this section, we show that despite the simplicity of 
the theoretical formalism used, it is capable of capturing 
new features characteristic for 3D artificial QDC that are 
not present in real bulk crystals and quantum well 
superlattices.  
        We carry out our analysis of the 3D minibands in the 
artificial QDC, on the example of GaAs/AlAs material 
system.  In our calculations, we used the following values 
for the effective masses: 
 

           0067.0 mmm GaAsw == ∗∗  , 015.0 mmm AlAsb == ∗∗  
        We show in Fig.3 the electron dispersion in a simple 
cubic QDC along [100] crystallographic direction. The 
energy band structure following from Eqs (8), it is not 
surprising. In fact, it is expected from the format similarity 
between them and the Kroing-Penny relation of the 
superlattices. The carrier wave vector is denoted by q with 
subscript showing particular quasi crystallographic 

direction. Zero energy along the ordinate axis corresponds 
to the position of the potential barrier. 
       The results in Fig. 2 are shown for a QDC that consists 
of quantum dots with the size nma 5.6=  and interdot 
distance nmb 5.1= . The energy bands are denoted by 
three quantum numbers zyx nnn  with the superscript 
indicating the degeneracy of the band.  
        

 
            FIG. 3  Dispersion relation in a cubical QDC 
shown along  [100]   quasi crystallographic direction 

 
FIG. 4. (a) Miniband width as a function of the interdot distance.  

The size of the dots is 6.5nm. (b) Miniband energy as a 
function of dot size.  The interdot distanc is 1.5nm. 
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       The energy bands shown in Fig.3 are degenerated in 
the center of the quasi Brillouin zone (QBZ) of the 
artificial crystal. The highest, sixfold, degeneracy is 
achieved in minibands of cubical QDC characterized by 
different quantum numbers. If two of these three quantum 
numbers are equal, the degeneracy is threefold. Finally, if 
three quantum number are equal, there is no symmetry 
degeneracy in such a miniband. Moving from the point of 
high symmetry in the center of the QBZ to a point of lower 
symmetry, the energy bands split. This degeneracy is a 
result of the same symmetry of the dots and the 
superlattice. If their symmetries are different, the twofold 
degeneracy will be the maximum permitted in all 
directions. 

      
FIG.5. (a) Energy as a function of the masse in the well. (b) 

Energy as a function of the masse in the barrier 
 

      The formation of 3D minibands in QDC is illustrated 
in Figs. (4a) and (4b). It is well known that a single 
quantum dot has discrete spectrum below a potential 
barrier and continuous spectrum above the potential 
barrier. When quantum dots are separated by a finite 
barrier and positioned very close to each other so that 
there is a significant wave function overlap, the discrete 
energy levels split into minibands. This can be seen in Fig. 
(4a) for the interdot distance b  below 3 nm. As the 
interdot distance increases, and the wave function overlap 
decreases, the minibands below the potential barrier 
reduce to discrete levels. This behavior is expected and 
consistent with what one observes in conventional quantum 

well superlattices. The 3D regimentation of quantum dots 
in QDC leads to appearance of ‘‘resonant’’ quasidiscrete 
energy levels above the potential barrier V0 for large 
interdot distances (5 nm for GaAs/AlAs) as seen in Fig. 
(4a). Figure (4b) demonstrates a transformation of QDC 
minibands into discrete levels below the potential barrier 
and quasicontinuum above the barrier. Other important 
observations to make in Fig. (4b) are that the miniband 
width does not increase monotonously with the energy, and 
that for realistic interdot distances complete energy gaps 
(stop bands) are formed in QDC. 
      We can have the same information about the formation 
the minibands structure in GaAs/AlAs-QDC by the 
variation of the barrier and well masses (see Fig.5.) 
 
4. Conclusion 

       Quantum dot superlattices QDSLs offer prospects for 
new generation of semiconductor devices. In particular; the 
GaAs/AlAs-QDSLs have attracted considerable attention 
due to application for infrared photodetector.     
        In this paper, the carrier band structure in a 3D 
regimented array of semiconductor quantum dots QDC 
has been analyzed. Numerical simulations have been 
carried out for the conduction band of a GaAs/AlAs 
quantum dot crystals. It was shown that the coupling among 
quantum dots leads to a splitting of the quantized electron 
energy levels of single dots, which results in the formation 
of 3D minibands. By changing the size of quantum dots, 
interdot distances, barrier height, and regimentation, one 
can control the electronic band structure of this artificial 
crystal. The properties of the artificial crystals turned out to 
be more sensitive to the dot regimentation than to the dot 
shape. 
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