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Abstract 

 Research on the modeling of continuum robots is focused on ways to construct the geometric models, while 

maintaining maximum specificities and mechanical properties of the robot. This paper presents a new approach of 
geometric modeling of continuum planar multi- sections robots, assuming that each section is curved in a circular 

arc, while having inextensible central axis of the structure. The direct geometric model is calculated analytically, 

whereas the extreme points (used in calculating the inverse geometric model) of each section are calculated 

numerically using a particle swarm optimization (PSO) method. One advantage of this method is to simplify the 
mathematical calculations and transform the complex problem into a simple numerical function; which allows the 

knowledge of the form of the central axis of the robot. Simulation examples using this method are carried to 

validate the proposed approach. 

Keywords: flexiblecontinuum robot; central axis; PSO; Khalil Klifinger method. 

 

1. Introduction 

Modeling continuum robots requires a 

continuous model of the central axis of the robot 

[1].Traditional approaches to modeling, in which the 

frames are associated with each joint, are 

inappropriate for the case of continuum 

manipulators, precisely because of the absence of 

discrete links in their architecture. A natural 

approach is to use a theoretical curve to model the 

axis of hyper-redundant robot. The fundamental 

question, concerning the modeling of the continuum 

robots, resides also in the infinity of the number of 

degrees of freedom which require the geometrical 

models in their continuous form. 
However, the hyper-redundant robotic systems 

(figure 1), with discrete links or continuum cannot be 

controlled only considering a finite number of 

degrees of freedom. Thus admitting a  reduced set 

of physical solutions. Among contributions on the 

geometric models of these structures, we can cite the 

model of [2, 3] use the Frenet-Serret formulas and 

modelise the central axis of the robot by a kinematic 

chain consisting of several rigid bodies. 

 

 
   

 

 

Figure 1: Simulation of the elephant's trunk; (a): the 

elephant's trunk. (b): the central axis o f the robot 
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[4, 5] assume that each section of a manipulator 

bends in an arc of a circle and that the central axis of 

the structure is inextensible. [5]Is based on modified 

Denavit-Hartemberg convention, the validation of 

this model has been done on a prototype robot 

called the „elephant trunk‟. Similarly [6] uses this 

assumption to study the kinematics of a snake robot. 

Furthermore, the inverse geometric model for the 

case of a multi-section is studied by [8], where the 

end points of each section are assumed to be known. 

The authors did not validate experimentally the 

model but they simulated the overall behavior using 

appropriate software. [9] Deals with the validation of 

the geometric model of a multi-section manipulator 

support by a mobile robot. [10] Has done

enhancements on the inverse geometric model 

described by [4] for one bending section, the 

validation of this model has done on a micro-robot 

and showed that the model was not robust against 

uncertainties of environment and inaccuracies of 

materials. This inverse geometric model is 

formulated as an optimization problem with a cost 

function and constraints using the principle of 

interval analysis.  Finally, a state of the art report in 

modeling these classes of robots is presented by [11]. 

The main contribution of this paper is described in 

two parts. The first presents the methodology follows 

to know the shape of the central axis of the robot, 

which represents the direct geometric model. This 

method relies on the assumption of a constant 

curvature and is based on knowledge of the angles 

between the end points of each section constituting 

the robot; these points will be determined by simple 

geometrical relations. The second part describes the 

inverse geometric model; where the extremes points 

of each section are calculated numerically by using 

optimization method, under the constraints of 

conservation of the length of each section. These 

geometric models presented are used to develop the 

kinematic and dynamic models for multi-section 

continuum robot. 

2. Direct Geometric Model 

2.1. Problem statement 

The direct geometric model consists of 

calculating the position and orientation of the 

platform n, with respect the base reference, 

depending on the lengths of cables (or tubes). In 

what follows, let us assume that each segment is 

curved in an arc of a circle, and that the central axis 

of the structure is inextensible. The first tangent of 

the curve is collinear with the initial ordered axis of 

each section (physical stress). 

 

 

 

Figure 2: Geometrical parameters (a) Overview of 

the bending section; (b) A portion of the bending 

section. 

 

Starting from the definition of arc length, where 

the curve is described with the arc length parameter: 

𝑓 𝑠 = (𝑥 𝑠 ,𝑦 𝑠 ), then its derivative is a unit 

vector, so it can be set as a function of an angle α(s) 

[12]: 

𝑓  𝑠 =  
𝑥  𝑠 = cos(∝  𝑠 )
𝑦  𝑠 = sin(∝  𝑠 )

   (1) 

From the figure 2(b) we have: 

 
 
 

 
 x = 𝑙 cos(𝜃) = 𝑙1 cos(𝜃) +

𝑑

2
sin( 2𝜃) 

=  𝑙2 cos(𝜃) −
𝑑

2
sin( 2𝜃)                   

y = 𝑙 sin(𝜃) =  
𝑑

2
+ 𝑙1 sin(𝜃) –

𝑑

2
cos( 2𝜃) 

= −
𝑑

2
+  𝑙2 sin(𝜃) +

𝑑

2
cos( 2𝜃)           

    (2) 

From equation (2) we find: 

sin(𝜃) =
𝑙2−𝑙1

2𝑑
    (3) 

(a) 
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cos(𝜃) =  1 −  
𝑙2−𝑙1

2𝑑
 

2

   (4) 

 

Therefore:  

𝜃 = 𝑎𝑡𝑎𝑛2(  
𝑙2−𝑙1

2𝑑
 , 1−  

𝑙2−𝑙1

2𝑑
 

2

  ) (5) 

2.2.   Calculating the angles function   

Consider an inextensible section of length 𝑙, 

formed of (n +1) points (figure3). When using the 

arc length, the variation of angles 𝛼 𝑠𝑖  is given by: 

𝛼 𝑠𝑖 = 𝐴𝑠𝑖 + 𝐵 ; i = 0, 1… n   (6) 

With the boundary conditions: 

 
𝛼 𝑠0 = 0 = 0

𝛼 𝑠𝑛 = 𝑙 = 2θ
    (7) 

 

 

 

 

Figure 3: Variation of  ∝ (𝑠) 

After the development we find the 

expression of  𝛼 𝑠𝑖 : 

𝛼 𝑠𝑖 =
2θ

𝑙
𝑠𝑖  ;    𝑠𝑖 ∈  0, 𝑙    (8) 

The equation (8) becomes: 

𝛼 𝑠𝑖 =
2

𝑙
𝑎𝑡𝑎𝑛2 

𝑙2−𝑙1

2𝑑
 , 1−  

𝑙2−𝑙1

2𝑑
 

2

 𝑠𝑖         (9) 

2.3. Interpolation of the angles function   

The interpolation of the function (9), with a 

natural cubic spline, gives: 

∝  𝑠 = 𝑎𝑖  
𝑠−𝑠𝑖

𝑖
 

3

+𝑏𝑖  
𝑠−𝑠𝑖

𝑖
 

2

+𝑐𝑖  
𝑠−𝑠𝑖

𝑖
 

1

+ 𝑑𝑖 (10) 

Where:  𝑎𝑖 ,𝑏𝑖 , 𝑐𝑖  et  𝑑𝑖  are parameters of the cubic 

spline, with  𝑠𝑖 ≤ 𝑠 ≤ 𝑠𝑖+1, 𝑖 = 𝑠𝑖+1 − 𝑠𝑖   and  𝑖 =

0,… , 𝑛 − 1. 

 

The constraints of the natural cubic spline are: 

 

-  Interpolation at the points: 

∝  𝑠𝑖
+ =∝𝑖  , 𝑖 = 0,… ,𝑛 − 1 

∝  𝑠𝑖
− =∝𝑖 ,       𝑖 = 1,… , 𝑛         

- Continuity 𝐶1  : 

∝′  𝑠𝑖
+ =  ∝′  𝑠𝑖

− ,   𝑖 = 1,… , 𝑛 − 1 

- Continuity 𝐶2  : 

∝′′  𝑠𝑖
+ =  ∝′′  𝑠𝑖

− ,    𝑖 = 1,… , 𝑛 − 1 

-  Minimization of energy: 

∝′′  0 = 0   𝑒𝑡 ∝′′  𝑙 = 0 

2.4. Integration of the angles function   

Once the function of the angles  ∝  s  

determined, we can find the solution by integration 

of the equation (1), by using Simpson‟s numerical 

method. The function solution represents the shape 

of the central axis of the robot: 

𝑓 𝑠 =  
𝑥 𝑠 =  𝑐𝑜𝑠

𝑠

0
 ∝  𝑠  

𝑦 𝑠 =  𝑠𝑖𝑛
𝑠

0
 ∝  𝑠  

  (11) 

2.5.  Applications 

a. One section 

Consider a bending section of length  𝑙 =

200 𝑚𝑚. Increasing 𝑙1 and 𝑙2 with ∆𝑙 = 0: 10: 30, 

such as:   𝑙1 = 𝑙 − ∆𝑙  and  𝑙2 = 𝑙 + ∆𝑙. The robot 

configuration is shown in figure 4 and the curves of 

the associated angles functions of each movement 

are shown in figure 5. The position and orientation 

of the superior platform with respect to base 

reference is given by equations (11) and (5) for 𝑠 =

𝑙. 

 
 

Figure 4: Planar robot with a single section 
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Figure 5: Functions of the associated angles  

b. Three sections 

Consider a robot formed with three sections of 

length   𝑙1 = 200  𝑚𝑚, 𝑙2 = 150  𝑚𝑚   and  𝑙3 =

100 𝑚𝑚. The position and orientation of the 

platform j with respect to base reference for a 

variation of the cables 𝑙𝑖 ,𝑗 (𝑙1,1 = 170, 𝑙2,1 =

230, 𝑙1,2 = 170, 𝑙2,2 = 130, 𝑙1,3 = 130, 𝑙2,3 = 70 ); 

is given by equations (11) and (5)  

- Platform 1:  
𝑓 𝑙1 =  

𝑥1 = 165.40
𝑦1 = 95.49

 

ɵ1 = 𝜋 3 

   

- Platform 2:  
𝑓 𝑙1 + 𝑙2 =  

𝑥2 = 294.05
𝑦2 = 133.97

 

ɵ2 = −0.486

  

- Platform 3:  
𝑓 𝑙1 + 𝑙2 + 𝑙3 =  

𝑥3 = 382.77
𝑦3 = 158.08

 

ɵ3 = 𝜋 3 

  

 
Figure 6: Initial and final position of the robot with 

three bending sections 

 

 
Figure 7: The function of the associated angles  

3. Inverse geometric model 

3.1.   Inverse geometric model for one section 

One bending section of a continuum 

manipulator is modeled by an arc of circle with one 

end point o fixed at the origin of the reference 

frame; the other end point P is located anywhere in 

the workspace. This section of continuum 

manipulator is parameterized by   lengths, its 

curvature κ, and its orientation ɵ as shown in figure 

8. These parameters are given by: 

𝜃 =  𝑎𝑡𝑎𝑛2 ( 𝑦,𝑥 )   (12) 

𝜅 =   
2(1−cos  2𝜃 )

 𝑥2 + 𝑦2
   (13) 

𝑠 =
2𝜃

𝜅
     (14) 

 
Figure 8: Circle arc parameters  

3.2. Inverse geometric model for multi-sections 

The inverse geometric model presented in the 

previous section can be iteratively applied to several 

sections in serial connection to model a continuum 

manipulator of n sections. 

The operational coordinates of the origins of the 

intermediate platforms (𝑥𝑖 ,𝑦𝑖) of each sections, are 

calculated numerically by the PSO method, using 

constraints on the conservation length, such 

that  𝑙𝑖 =     𝑥𝑖  −  𝑥𝑖−1  2  +    𝑦𝑖  −  𝑦𝑖−1   2   𝜃𝑖 /
 sin(𝜃𝑖) , with 𝜃𝑖 = 𝑎𝑡𝑎𝑛2( 𝑦𝑖 − 𝑦𝑖−1 ,  𝑥𝑖 −
𝑥𝑖−1 ), for  𝑖 = 1,… , 𝑛. Where  𝑥𝑖 ,𝑦𝑖  are the 

Cartesian coordinates of the origin of reference 

frame 𝑅𝑖 in the frame𝑅𝑖−1. The algorithm for 

computing the inverse geometric model of the 

overall structure is presented in figure 9. 
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Figure 9: Algorithm for computing the inverse 

geometric model of a planar flexible continuum 

robot  

This optimization method is inspired by the 

social behavior of some biological organisms, 

especially the group's ability of some animal species 

to locate a desirable position in the given area. This 

method uses the simple rules of displacement in the 

space of the solutions, where the particles can 

progressively converge to a local minimum. For each 

iteration t, the velocity changes by applying equation 

(15) to each particle. 

𝑣𝑖(𝑡 + 1) =  𝜔𝑣𝑖(𝑡) +  𝑐1𝜑1 𝑃𝑖𝑏𝑒𝑠𝑡 − 𝑥𝑖 +

𝑐2𝜑2(𝑃𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖  )         (15) 

𝑥𝑖 𝑡+ 1 =  𝑥𝑖 𝑡 + 𝑣𝑖  (𝑡+ 1)       (16) 

 

Where 𝜔 is called the inertia weight, 𝑐1 and 𝑐2  are 

weighting factors and 𝜑1  ,  𝜑2 are random variables 

uniformly distributed within interval [0, 1]. 

 𝑃𝑖𝑏𝑒𝑠𝑡   and 𝑃𝑔𝑏𝑒𝑠𝑡   represent the best position visited 

by a particle and the best position visited by the 

swarm till the current iteration t. The position 

update is applied by equation (16) based on the new 

velocity and the current position. The calculation 

steps are given by the following algorithm: 

 

- For the time step t 

    For each particle 

        For each dimension d 

            Modify the velocity: 

 

𝑣𝑑(𝑡 + 1) =  𝜔𝑣𝑑(𝑡) +

𝑎𝑙𝑒𝑎𝑡𝑜𝑟𝑦. [𝑐1𝜑1] 𝑃𝑖,𝑑 − 𝑥𝑑(𝑡)  +

𝑎𝑙𝑒𝑎𝑡𝑜𝑟𝑦. [𝑐2𝜑2](𝑃𝑔 ,𝑑 − 𝑥𝑑(𝑡) )

  

- Move:𝑥 𝑡 + 1 =  𝑥 𝑡 + 𝑣(𝑡 + 1) 

 

3.3. Application 

Knowing the general movement of the platform 

n generated by the operational 

coordinates  𝑥𝑛 , 𝑦𝑛  we determine the displacements 

of the actuators and the mobile platforms. To 

illustrate this inverse geometric modeling, we applied 

it on a planar robot consisting of two bending 

sections of length  𝑙1 = 140 𝑚𝑚 and  𝑙2 =

120 𝑚𝑚 ,  for the following settings of the trajectory 

in operational space:  

  
𝑥2 = 260− 15 × 𝑡
𝑦2 = 15 × 𝑡            

  

Where t  is time variable varying from 0 to 8 sec, 

with a step equal 2 sec . 

 
Figure 10: The virtual axis of the robot 

 
Figure 11: Robot with two bending sections 

describing a linear path 

 
Figure 12: The execution time of the optimization 

algorithm for each point found. 
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The simulations were done on a PC with a 

processor i3 3.30 GHz. the execution time of the 

optimization process for each point found is shown 

in figure.12. The average time is equal to 0.128 sec. 

Conclusion and future works 

In this paper, a new approach of modeling of 

the planar flexible continuum robots is presented. 

We have detailed the methodology to formulate the 

function describing the curvature of the central axis 

of the robot. The principal idea of our work is based 

on rebuilding of curves work starting from the 

tangential data developed in [12]. Mathematical 

formulations of a planar continuum robot are given; 

these formulations provide the calculation of the 

cables lengths of the robot for of a given point in the 

workspace and vice versa.  The operational co-

ordinates of the intermediate platforms origins, used 

in the calculation of the inverse geometric model, 

are calculated by a numerical method where the 

space of search for this method is arbitrarily selected. 

Future work is to improve the execution time, one 

taking the space of research in the workspace of each 

section, in order to find a solution close to real time.  

To have the uniqueness of the solution the 

introduction of other constraints is necessary. Also 

the generalization of the approach in the three-

dimensional is projected. 
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