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Abstract 

In this work, the thermal buckling properties of carbon nanotube with small scale effect are studied. Based on the nonlocal continuum 

theory and the Timoshenko beam model, the governing equation is derived and the  critical buckling temperature is presented. The 

influences of the scale coefficients, the ratio of the length to the diameter, the transverse shear deformation and rotary inertia are discussed. 

It can be observed that the small scale effects are significant and should be considered for thermal analysis of carbon nanotube. The critical 

buckling temperature becomes higher with the ratio of length to the diameter increasing. Furthermore, for smaller ratios of the length to the 

diameter and higher mode numbers, the transverse shear deformation and rotary inertia have remarkable influences on the thermal 

buckling behaviors. 
Keywords: carbon nanotube, scale effects, nondimensional critical buckling temperature, thermal buckling, Timoshenko beam.   

PACS:  

 

1. Introduction  

     Since their discovery, carbon nanotubes were quickly 

imposed in various areas, particularly in the area of 

nanotechnology. The unique structure of this compound 

derived graphene makes it one of the most interesting both 

electronic and mechanical perspective and promises many 

marketable outs.                                                     

      Carbon nanotubes were discovered by chance among 

the soot obtained in the discharge of an electric arc between 

two carbon electrodes. It is in this type of experience as 

researchers from the Universities of Heidelberg and 

Houston had observed in 1986 carbon molecules of a new 

type: the fullerenes. 

      It is in these Sumio Lijima that soot [1] Japanese 

scholar observed in 1991 funny little hollow tubes made of 

carbon atoms and that no one had previously noticed. They 

were given the name of "carbon nanotubes ". 

       Some researchers have shown that the mechanical 

behaviors of the carbon nanotube are   sensitive to the 

thermal effects in the external environment [2-4]. Recently, 

considering the effects of the transverse shear deformation 

and rotary inertia,  

 

Hsu et al. [5] and Lee and Chang [6] have been undertaken 

to study the thermal buckling properties of the carbon 

nanotubes using Timoshenko beam model. At the end to 

see the scale effect (e0a) on the buckling properties of 

carbon nanotubes, equation involving the nonlocal 

Timoshenko beam theory has been established. 

 

2. Motion equation 

     The nonlocal elasticity model was first presented by 

Eringen (1972). According to this model, the stress at a 

reference point in the body is dependent not only on the 

strain state at that point, but also on the strain state at all of 

the points throughout the body. The constitutive equation 

of the nonlocal elasticity can be written as follows 

 

[1−(𝑒0𝑎)2∇ 2

] σij= Cijk εkl                                      (2.1)                                                              

 

Where Cijkl is the elastic modulus tensor of the classical 

isotropic elasticity; and σij and εkl are the stress and strain 

tensors, respectively. In addition, e0 is a nondimensional 

material constant, determined by experiments, and 𝑎 is an 

internal characteristic length (e.g. 𝑎 lattice parameter, 

granular distance). Therefore, e0𝑎 is a constant parameter 

that showing the small-scale effect in nano-structures. 

     For the nonlocal Timoshenko beam theory, the Hook’s 

law of carbon nanotube can be expressed as the following 

partial differential forms: 

 

𝜎𝑥 − (𝑒0𝑎)2 𝜕2𝜎𝑥

𝜕𝑥2 = 𝐸𝜀𝑥 ,                                 (2.2a)                                                                                 

𝜏𝑥,𝑧 − (𝑒0𝑎)2 𝜕2𝜏𝑥𝑧

𝜕𝑥2  = G𝛾𝑥𝑧  ,                             (2.2b)                                                   

 

Where: 

𝜎𝑥  : The axial stress,  

𝜏𝑥,𝑧  : The shear stress, 
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𝜀𝑥 : The axial strain, 

𝛾𝑥𝑧  : The shear strain,  

E: The Young’s modulus, 

G: The shear modulus, 

e0 : Scale effect coefficient. 

   

     The expressions of the axial strain and the shear strain 

are [7]: 

 

𝜀𝑥= z 
𝜕𝜓

𝜕𝑥
 ,                                                          (2.3a)                                                                                              

𝛾𝑥𝑧= 
𝜕𝑊

𝜕𝑥
− 𝜓,                                                    (2.3b)                             (2.3b) 

   

  Where 𝑊 is the transverse displacement and 𝜓 the 

rotation caused by bending. 

For the Timoshenko beam model with the thermal stress, 

the following relation can be derived: 

 
𝜕𝑆

𝜕𝑥
= −𝑁𝑇

𝜕2𝑤

𝜕𝑥2  ,                                                 (2.4a)                                                                                                 

𝜕𝑀

𝜕𝑥
 + S = 0,                                                        (2.4b)                                                   

 

   Where S is the shear force, M the resultant bending 

moment and NT the thermal force which can be expressed 

as: 

 

𝑁𝑇 = −
𝐸𝛼𝑇𝐴𝑐

1−2𝜐
 ,                                                    (2.5)                                                                                                 

 

Where α is the thermal expansion coefficient, T the 

temperature change, Ac the cross area and υ the Poisson’s 

ratio. 

The bending moment and the shear force can be defined 

by 

 

𝑀= 𝑧𝜎𝑥
 

𝐴𝑐
d𝐴𝑐   ,                                                 (2.6a)                                                                                                

 𝑆=𝐾  𝜏𝑥𝑧
 

𝐴𝑐
d𝐴𝑐 .                                                 (2.6b)                                               

Multiplying equation (2.1a) By z dAc and integrating the 

result on the surface of Ac, we obtain: 

 

  
 

𝐴𝑐

𝑧𝜎𝑥𝑑𝐴𝑐 − (𝑒0𝑎)2   𝑧
 

𝐴𝑐

𝜕2𝜎𝑥
𝜕𝑥2

𝑑𝐴𝑐   = 𝐸 𝑧 
 

𝐴𝑐

𝜀𝑥 𝑑𝐴𝑐  

Substituting equations (2.2a), (2.5a), we obtain: 

  
 

𝐴𝑐

𝑧𝜎𝑥𝑑𝐴𝑐 − (𝑒0𝑎)2   𝑧
 

𝐴𝑐

𝜕2𝜎𝑥
𝜕𝑥2

𝑑𝐴𝑐   = 𝐸 𝑧2  
𝜕𝜓

𝜕𝑥

 

𝐴𝑐

 𝑑𝐴𝑐  

Avec: 𝐼 =  𝑧2 

𝐴𝑐
d𝐴𝑐 , 

𝜕2𝑀

𝜕𝑥2 =   𝑧
 

𝐴𝑐

𝜕2𝜎𝑥

𝜕𝑥2 𝑑𝐴𝑐  

Or: 

𝑀 −(𝑒0𝑎)2  
𝜕2 𝑀

𝜕𝑥2  = EI 
𝜕𝜓

𝜕𝑥
 ,                                   (2.7a)                                                     

 

By integrating equation (2.1b), one obtains: 

  
 

𝐴𝑐

𝜏𝑥𝑧𝑑𝐴𝑐 − (𝑒0𝑎)2   
 

𝐴𝑐

𝜕2𝜏𝑥𝑧
𝜕𝑥2

dAc  =   
 

Ac

G𝛾𝑥𝑧𝑑𝐴𝑐  

Substuting equation (2.5b) 

  

and   
𝜕2𝑆

𝜕𝑥2 =   
 

𝐴𝑐

𝜕2𝜏𝑥𝑧

𝜕𝑥2 dAc  

So we obtain: 

 

𝑆 − (𝑒0𝑎)2  
𝜕2𝑆

𝜕𝑥2 = 𝐾𝐴𝑐𝐺  
𝜕𝑊

𝜕𝑥
−𝜓                     (2.7b)                                                                   

 

Where 𝐼 =  𝑧2 

𝐴𝑐
d𝐴𝑐  is the moment of inertia and K the 

shear correction factor which is used to compensate for the 

error due to the constant shear stress assumption. 

     Based on Eqs. (2.3b) and (2.6a) the following relation 

can be obtained: 

 

𝑀 = 𝐸𝐼
𝜕𝜓

𝜕𝑥
+ (𝑒0𝑎)2  −

𝜕𝑆

𝜕𝑥
  .                                (2.8)                                                                      

     Substituting Eq. (2.3a) into Eq. (2.7), we can obtain 

𝑀 = 𝐸𝐼
𝜕𝜓

𝜕𝑥
 + (𝑒0𝑎)2  𝑁𝑇

𝜕2𝑊

𝜕𝑥2    .                            (2.9)                                                                

     Based on Eqs. ((2.3a) and (2.6b), it can be derived that 

𝑆 = 𝐾𝐴𝑐𝐺(
𝜕𝑊

𝜕𝑥
 – ψ) + (𝑒0𝑎)2(−𝑁𝑇

𝜕3𝑊

𝜕𝑥3 ).            (2.10)                                                     

     Substituting Eq. (2.9) into Eq. (2.3a), we can obtain 

𝐾𝐴𝑐𝐺  
𝜕2𝑊

𝜕𝑥2 −
𝜕𝜓

𝜕𝑥
 + (𝑒0𝑎)2  −𝑁𝑇

𝜕4𝑊

𝜕𝑥4  =  −𝑁𝑇
𝜕2𝑊

𝜕𝑥2  .                                                           

(2.11) 

     Based on Eqs. (2.3b), (2.8) and (2.9), the following 

relation can be derived: 

𝐸𝐼
𝜕2𝜓

𝜕𝑥2 + 𝐾𝐴𝑐𝐺(
𝜕𝑊

𝜕𝑥
 – 𝜓) = 0.                            (2.12)                                               

    

     It can be observed that Eqs. (2.10) and (2.11) are the 

governing equations. For the hinged boundary condition, 

the solution of carbon nanotube can be expressed as 

 

𝑤 = 𝑊𝑠𝑖𝑛 𝜆𝑥 ,                                                                      
𝜓 = 𝜓 cos 𝜆𝑥 ,                                                   (2.13) 

 

Where 𝑊 and 𝜓 are the amplitudes of the deflection and 

the slope, λ= kπ/L and k a positive integer which is related 

to the buckling modes. 

     Substituting Eq. (2.12) into Eqs. ((2.10) and (2.11), we 

can obtain 

 

[(𝑒0𝑎)2𝜆2 + 1]𝜆2𝑁𝑇𝑊 + 𝜆2𝐾𝐴𝑐𝐺𝑊 −      𝜆𝐾𝐴𝑐𝐺𝜓 = 0,                                               
(2.14a)      

𝜆𝐾𝐴𝑐𝐺𝑊 −  𝜆2𝐸𝐼 + 𝐾𝐴𝑐𝐺 𝜓 = 0.                 (2.14b)                                                             

      

     Then, the critical temperature with the nonlocal 

continuum theory can be derived as 

 

𝑇𝑐𝑟
𝑛𝑜𝑛 =

𝜆2𝐾𝐺𝐼(1−2𝜐)

𝛼[(𝑒0𝑎)2𝜆2 +1](𝐾𝐴𝑐𝐺+𝐸𝐼𝜆2)
                          (2.15)  

                                                 

     As a result, the critical buckling temperature can be 

expressed as the following form [8-9]: 

 

𝑃𝑐𝑟  =
Tcr

non

I/αAc L2   
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3.  Results and discussions 

 

     In this section, numerical calculations for the thermal 

buckling properties of carbon nanotube are carried out. 

The material constants used in the calculation are the 

Young’s modulus E=1 TPa,       the Poisson’s ratio 𝜐=0.3, 

the shear modulus G=E/[2(1+𝜐)], the shear coefficient k = 

10/9 and the temperature expansion coefficient 𝛼 =1.1× 10
-6

 

K
-1

 which is for the case of the high temperature [10, 11, 12, 

13]. It should be noted that according to the previous 

discussions about the values of 𝑒0 and 𝑎 in detail, 𝑒0𝑎 is 

usually considered as the single scale coefficient which is 

smaller than 2.0 nm for nanostructure[14,15].
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Fig.1. Relation between the critical buckling temperature 

(Pcr) and the mode number (k) with different scale 

coefficients (e0𝑎), the value of L/d=20. 

 

    The relation between the critical temperature (Pcr) and 

the mode number (k) is presented in fig. 1. The ratio of the 

length to the diameter, L/d is 20. The scale coefficients e0𝑎 

=0, 1 and 2 nm are considered. The most notable feature is 

that the results based on the two theories are almost the 

same for small mode numbers. However, the difference 

becomes obvious with the mode number increasing. The 

classical elastic (i.e. the local) model, which does not 

consider the small scale effects, will give a higher 

approximation for the critical buckling temperature. But 

the nonlocal continuum theory will present an accurate and 

reliable result. 
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Fig.2. Relation between the critical buckling temperature 

(Pcr) and the mode number (k) with different values of L/d. 

The scale coefficient          e0𝑎 =1nm. 
 

    The influences of the ratio of the length to the diameter 

(L/d) on the critical buckling temperature are shown in fig. 

2. The scale coefficient is 1 nm. From fig. 2, it can be seen 

that when the mode number is less than 4, the difference is 

not obvious. When the mode number is larger than 5, this 

influence becomes remarkable. Moreover, the critical 

buckling temperatures for all of the three ratios become 

larger with the mode number increasing. The larger the 

ratio of the length to the diameter is, the higher the 

nondimensional critical buckling temperature becomes. It 

means that the ratio of the length to the diameter has 

significant influence on the critical buckling temperature for 

larger mode numbers. 
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Fig.3.a. Relation between the critical buckling temperature 

(Pcr) and the value of L/d with different scale coefficients 

(e0𝑎), k = 1. 
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Fig.3.b. Relation between the critical buckling temperature 

(Pcr) and the value of L/d with different scale coefficients 

(e0𝑎), k = 5. 
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Fig.3.c. Relation between the critical buckling temperature 

(Pcr) and the value of L/d with different scale coefficients 

(e0𝑎), k = 10. 

 

    The relation between the critical buckling temperature 

and the ratio of the length to the diameter are shown in fig. 

3(a)–(c). The scale coefficients    e0𝑎 = 0, 1 and 2 nm and 

the mode number k = 1, 5 and 10 are considered, 

respectively. It can be seen that the ranges of the critical 

buckling temperature for these mode numbers are quite 

different. In fig. 3(a), the range is the smallest for k = 1, but 

the range is the largest for k = 10 in fig. 3(c). It means that 

the larger the mode number is, the higher the critical 

buckling temperature becomes. 

    Furthermore, it can be observed that when the ratio of 

the length to the diameter is small, the scale effects are 

significant. However, the scale effects on the 

nondimensional critical buckling temperature will diminish 

with the ratio (i.e. L/d) increasing. It implies that the scale 

effects on the thermal buckling properties are not obvious 

for slender carbon nanotube but should be taken into 

account for short nanotube. 

 

4. Conclusions                                                                  

     In this work, based on the nonlocal continuum theory, 

the governing equation is presented and the critical 

buckling temperature of carbon nanotube is derived. The 

influences of the scale coefficient, the ratio of the length to 

the diameter, the transverse shear deformation and rotary 

inertia on the thermal buckling properties are discussed. 

From the results, it can be concluded that the small scale 

effects should be considered for the thermal buckling 

behaviors, especially for higher mode numbers and short 

carbon nanotube. The critical buckling temperature can be 

changed by different ratios of the length to the diameter. 

The influences of the transverse shear deformation and 

rotary inertia are obvious for higher mode numbers and 

smaller ratios of the length to the diameter.  
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