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Abstract—In this paper, we propose two extensions of SDPL
(Speed and Direction Prediction-based Localization) method. The
first is called MA-SDPL (Multiple Anchors SDPL) which uses
multiple mobile anchors instead of only one. Each anchor has its
own trajectory and its own departure point. The goal is to ensure
a total coverage of the sensor field and to multiply the chance of
receiving anchor beacons. Anchor Beacons help localizing mobile
sensors. As a consequence, the location estimation will be
enhanced. The second method deals with one mobile anchor but
with the ability of multi-hoping, that is, when a sensor estimates
that it is well enough localized, it sends beacons to its h-
neighborhood about its current location, hence, it plays the role of
an additional anchor. This solution reduces the cost comparing to
when wusing multiple anchors and allows rapid location
propagation. Simulation results show that the two extensions
improve better the ratio of localized sensors and reduce the
location error compared to the basic SDPL. We have also tested
them in a noisy environment to be closer to a real deployment.

Keywords— Localization; Prediction; Mobile Anchor; Mobile
Wireless Sensor Networks.

I.  INTRODUCTION

With the advent of Internet of things [1][2], mobile
wireless sensor networks (MWSN) play a major role in this
new technological life style. Indeed, many applications can
benefit from such networks. For example, in smart cities,
sensors can be attached to vehicles, animals and human beings.
In Emergency Response, first responders can be equipped with
sensors to detect useful data and victims in the hit area, and to
keep in touch with the command center [3]. Nowadays, the
applications of MWSN are limited only by our imagination.

Localizing mobile sensors is a very challenging problem
that did not receive enough research. Still, there are no
standards except GPS localization. One of the recent proposed
methods for MWSN is SDPL [4] (Speed and Direction
Prediction-based Localization) that estimates the sensor
position with the prediction of its real speed and direction that
the sensor moves with. SDPL assumes that a mobile anchor
moves in the sensor field and sends periodically position
beacons to help localizing mobile nodes.

In this paper, we propose two extension methods of SDPL.
The first is MA-SDPL that considers multiple mobile anchors.
The goal is to heighten the number of beacons that a node
receives and thus, to get more accurate estimations. The

second is called MH-SDPL that works with the multi-hoping
fashion. In MH-SDPL, when a node is well localized, it
participates in the beaconing process; hence, it plays the role of
an additional anchor. We conduct a series of tests and compare
the results with the basic SDPL.

The paper is organized as follows. Section III describes the
basic SDPL method. Section IV and V present in details the
two proposed methods MA-SDPL and MH-SDPL. In section
VI, simulation results are presented and discussed. We finish
this paper with a conclusion and future work.

IL. RELATED WORK

Locating mobile sensors is a very challenging problem [5]
since sensors change frequently their positions and often with
no information about their next destinations. Many GPS-less
localization methods have been proposed in the literature to
localize mobile sensors. Among the most promising methods,
we find the probabilistic ones.

Authors is [6] propose the use of the probabilistic Monte
Carlo method to predict of the next position using received
anchor beacons and the maximum speed of the mobile nodes.
The method does not consider any information about the
direction of the nodes and assumes that all the nodes move
with the same maximum speed.

The method proposed in [7] uses a mobile robot to predict
the position of nodes in an indoor environment. The method is
based on a Probabilistic Graphical Model (PGM) that estimates
the sensor node position using range-only measurements of the
received signal strength indicator (RSSI). Even if the method
was validated by real-world experiments attesting that the
probabilistic model is suitable, but the method do not consider
the mobility of nodes. More surveyed localization methods can
be found in [8].

Authors in [4] propose a method called Speed and
Direction Prediction-based Localization to predict the real
speed and the direction of the mobile nodes to increase the
accuracy of the localization estimations. Since our work is an
enhancement of SDPL, in the next section we detail this
method.
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III. SDPL (SPEED AND DIRECTION PREDICTION-
BASED LOCALIZATION)

SDPL [4] is a distributed probabilistic method based on
the prediction of the real velocities and directions a node
moves with. This allows unknown mobile nodes to better
localize themselves. In addition, a single mobile anchor travels
in the field and periodically sends messages that contain its
current location (see Fig. 1). Only the anchor can obtain its
exact coordinates at any time (e.g. equipped with GPS) or in
the case of a predefined trajectory, it can get its current
position knowing its velocity and its trajectory. SDPL is
mainly based on the prediction of the velocity and the direction
of unknown nodes. To do so, SDPL authors supposed that
nodes follow a rectilinear movement during small intervals
(see Fig. 2) where nodes have a constant velocity and direction
during certain time periods (At). This reflects the reality where
nodes (e.g. Human beings, cars, etc) keep their speed and
direction, at least, for moments. This allows nodes to predict
positions at time T = T + AT with the following equations:

(M

P(T) =V, X AT + P,(T) N x, =V, X cos8 X AT + x,(Tp)
Yy =V, X sin@ X AT + y, (Ty)

Where fis the angle between the abscissa axe and the speed

vector V The speed is calculated as follows:

\/(xu (TO) — Xy (Ts))z + (yu (TO) —Wu (Ts))z
b= T, — T,

2

Where Ty, and T are times corresponding to two positions
already estimated. If the calculated speed is equal to zero, the
node deduces that it is static during A.

The angle 6 defines the node direction. 8 is calculated as

YuTo) = vy (Ty)
tan = ——— (3)
xu(T())_xu(Ts)

follows:

In case where a node has already estimated many positions and
cannot receive anchor messages, it calculates the speed of each
couple of its previous positions and takes the mean as its next
speed prediction. In addition, to predict the direction angle, the
node makes a linear regression with these positions to deduce,
then, the line that provides a best fit for the data points using
the least squares approach (See Fig. 3).

After the prediction of the speed and the direction, a node
estimates its coordinates (x,y) as follows:

X = Xprey + €08 X speed X Ty;r

4)

Y = Yprev + Sin 6 X speed X Ty;s

@ anchor positions e

node positions

{a) case of static node (b} case of mobile node

Figure 1: Estimation with three anchor messages.

X XA nd X

Figure 2: Speed and Direction Prediction in SDPL.

Where (Xprey s Yprev ) is the last estimated position; (speed, 8)
are respectively the predicted speed and direction angle; T 45 is
the time between current time and time of the last estimation.

The idea of predicting the velocities and directions of the
moving sensors is very promising and allows reducing the
localization error [4]. But, one of the major drawbacks of
SDPL is that at the beginning, the localization process relies on
one single mobile anchor. That means that if the anchor stops
to move for some reason or fails to cover the sensor area, the
localization process fails and many sensors cannot localize
themselves. To increase the chance of localizing sensors, we
propose an extension of SDPL that works with multiple mobile
anchors called MA-SDPL.
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Figure 3: Location estimation with SDPL.
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Iv. MA-SDPL (Multiple Anchors- SDPL)

In an application such as Emergency Response, many fire
trucks and ambulances circulate in the hit area to help
evacuating victims. Anchors can be placed in such vehicles.
From such scenario, the idea of using multiple anchors is come
from. That is, embedding anchors on emergency vehicles. MA-
SDPL relies on multiple mobile anchors to ensure the coverage
of the sensor area and to increase the number of beacons a
mobile sensor receives. Each mobile anchor has its own
trajectory and velocity. When an anchor moves, it sends
periodically beacon messages that contains its ID and its
current location defined by the (x, y) coordinates (See Fig. 4).

The localization technique is the same as the basic SDPL.
The difference lies in the number of beacons a node receives in
an interval of time. The more the number of anchors is the
more the number of beacons an unknown node receives. Thus,
the occurrence of the case of velocity and direction prediction
(that is when the unknown node receives more than three
anchor messages) will be very high. Hence, the node estimates
better its position.

In an application such as Emergency Response or
Military Battle, the environment is very noisy and anchor
messages may not be received properly by the other sensors.
Fig. 5 presents an example where some anchor neighbors are
deprived of receiving location messages because of the noise.
As a consequence, they cannot localize themselves accurately.

In Section VI.D, we will present the effect of noise on the
localization error of MA-SDPL.

The idea of using multiple anchors to ensure the total
coverage of the sensor area is good but not always realistic.
The trajectory and the velocity is a key condition. Some
sensors still cannot get anchor messages if the different
anchors don’t travel around them. In addition, not all
applications need to use several anchors. Also, it may be costly
since each anchor should be without energy constraints and
may use GPS system. To overcome this condition, we propose
a new extension of SDPL called Multi Hop SDPL.

V.  MH-SDPL (Multi Hop- SDPL)

MH-SDPL is based on the multi-hop localization that is
when a sensor has a good enough estimation of its position; it
plays the role of an anchor. In other words, it sends its
estimated position to its neighbors to help them localizing
themselves. The goal of MH-SDPL is to minimize the cost of
using multiple anchors. For example, in a disaster management
application, the main anchor is a rescue helicopter that sends
position messages to the responders in the hit area (see Fig. 6).
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Figure 4: Emergency vehicles as mobile anchors.
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Figure 5: Noisy Environment Effect.

Sensors placed in fire trucks or in ambulances receive
these messages and localize themselves and in turn they send
their location estimations to the sensors attached to the
rescuers in their vicinity. We call such localization, 2-hop
localization and so on. The following figure shows an example
of 2-hop localization in the case of an emergency application.
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Figure 6: Multi- hop localization.
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VI

To evaluate the two extensions of SDPL, we opted for

simulation. Our simulations are performed using the Network
Simulator (NS) [9] version ns-allinone-2.34. NS2 is widely
used in academic network researches. To analyze the
simulation results, the main metric is the localization error.
The localization error is calculated as the Euclidian distance
between the actual and the estimated position of a node. We
consider the average localization error over all sensors.
We have chosen SCAN as a trajectory for the mobile anchors.
For node mobility, we use the random waypoint mobility
model [10] where each node can vary its speed and direction at
each own time step. Table 1 summarizes the simulation
parameters used in our tests.

PERFORMANCE EVALUATION

A. MA-SDPL : Impact of Number of Anchors

In the following test, we study the impact of the number of
the anchors on the localization error using MA-SDPL. In this
test, anchors follow the SCAN trajectory and have different
start points. The travelling time was set to 100s.
As we can notice from Fig. 7, with the increase of the number
of mobile anchors, the localization error decreases. In fact, the
more the number of mobile anchors is the more unknown
nodes receive position messages from these anchors and the
case of speed and direction prediction will be more frequent;
hence nodes improve their location estimations. This explains
the decrease of the mean error.

B. MA-SDPL: Impact of Travel Rounds

Travelling many times the sensor area has its impact on the
localization error. When a mobile anchor travels many time the
zone, unknown nodes receive more position messages. Fig.8
shows the results obtained by deploying four mobile anchors
that travel more than one round the sensor area. Note that
increasing the number of rounds is similar to increasing the
travelling time.
Initially, nodes have no knowledge about their positions. From
the first round, nodes begin to estimate their positions hence
the first round is a transition from the random positioning to a
more accurate positioning. Obviously, when anchors travel the
sensor area many times, unknown nodes receive more position
messages from these anchors. And the more a node receives
anchor messages, the more it uses the prediction of the speed
and the direction which allows improving its location
estimation.

C. MA-SDPL: Impact of Diffusion Interval

Another important factor is the anchor diffusion interval.
The smaller the interval is, the more the number of anchor
message a node receives. This effects directly its location
estimations. Fig. 9 shows that when this interval is small, the
location error decreases because the unknown node gets more
information related to its mobility from the anchors and when
it cannot receive any anchor messages, it uses easily the
prediction case. This improves its location estimation.

20
18 o
TABLE L SIMULATION PARAMETERS g
2
Parameter Default value 5
Number of nodes 100 e
Area size 200x200 m? 5 107
Mac layer 800.11 E 8 1
Communication range 30m g 6
Antenna Omni Antenna ~ #d
Propagation TwoRayGround 7 4
Mobility Model RandomWayPoint o . .
Anchor speed 20m/s 3 5 5
Anchor trajectory SCAN
Sensors Maximum Speed 5m/s Number of Anchor Rounds
Figure 8: Anchor travel rounds VS Localization Error.
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Figure 7: Number of Anchors VS Localization Error. Figure 9: Diffusion Interval VS Localization Error.
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Figure 10: Diffusion Interval VS Consumed Energy.

However, receiving much anchor messages consumes sensor
energy. Fig. 10 shows the impact of the diffusion interval on
the total energy. When the diffusion interval is small, the
anchors send many messages in the localization interval. This
means that unknown sensors receive also many messages
which deplete their energy.

D. MA-SDPL : The impact of a Noisy Environment

We have tested MA-SDPL under a noisy environment and
called it MA-SDPL-N. 30% of noise means that 30% of the
nodes inside a noisy zone cannot receive any anchor messages
or receive them with erroneous information. Note that the test
was conducted with 4 mobile anchors following SCAN
trajectory.

The noise has its bad effect on the localization process (see
Fig. 11). In fact, in a noisy environment, location messages
may not be received by unknown nodes or the messages may
contain wrong information. In one side, the nodes inside a
noisy area cannot receive anchor messages and are obliged to
draw random samples from the zone which increases the
uncertainty leading to a high localization error. In the other
side, those who are in less noisy zone receive some anchor
messages but not sufficiently, hence they use more frequently
the prediction case successively without refining their
estimations with anchor messages. This increases the average

location error.
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Figure 11: MA-SDPL-N.

E. MA-SDPL VS MH-SDPL

In the first test, we compare the average consumed energy
between the two methods MA-SDPL and MH-SDPL. For MH-
SDPL, only one mobile anchor is used unlike MA-SDPL
where four mobile anchors were deployed. For both methods,
mobile anchors follow SCAN trajectory. Note that in this test,
MH-SDPL is 2-hop localization.

We notice from Fig. 12 that for both methods the consumed
energy is proportional to the execution time. Indeed, over time,
nodes with MA-SDPL receive more anchor messages which
consumes their energy. In the case of MH-SDPL, more nodes
consider themselves as well localized and send their locations
to their neighbors. As a consequence, their energy
consumption of sending increases as well as the neighbors’
energy consumption of receiving.

F. SDPL, MA-SDPL and MH-SDPL

In this section, we compare the three methods, the basic
SDPL, MA-SDPL and MH-SDPL in terms of the number of
localized nodes and the average error. Four (4) mobile anchors
were used for MA-SDPL while for the others only one was

used. MH-SDPL is of 2-hops.
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Figure 12: MA-SDPL VS MH-SDPL.
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Figure 13: Localized nodes: SDPL VS MA-SDPL VS MH-SDPL.
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Figure 14: Localization Error: SDPLVS MA-SDPL VS MH-SDPL.

Thanks to the multiple mobile anchors used in MA-SDPL and
the fact that each anchor begins with its own start point (in our
case the four corners of the square area), unknown sensors
have more chance to receive anchor messages hence to localize
themselves even before that anchors travel the whole area. This
explains the total coverage after just 40 seconds from the
beginning of localization process (see Fig.13). In MH-SDPL,
even with only one mobile anchor, the fact that well localized
sensors participate in turn in the localization process by
sending their location estimations to their neighbors, this help
those nodes that cannot receive anchor messages to be
localized or even enhance their location estimations. So the
number of the localized nodes will increase.

Fig. 14 shows that by the end, MA-SDPL with four anchors
gives results about 26% better than MH-SDPL with 2-hop
localization and 31% better than the basic SDPL.

VIL

Our goal, in this paper, was to improve the method SDPL
(Speed and Direction Prediction-based Localization) in terms
of coverage, consumed energy and localization error. To do so,
we have proposed to use multiple mobile anchors instead of
one to cover the whole area rapidly and to help localizing the
unknown sensors by giving them the chance of receiving
location messages from more than one mobile anchor. From
the simulation results, this new extension of SDPL called MA-
SDPL has proven to be efficient. Indeed, the localization error
was reduced considerably. In addition, the more the number of
mobile anchors is, the less the localization error is. We have
also tested MA-SDPL under a noisy environment. Obviously,
when the noise is high, the average error is high too. In the
case where multiple anchors are not available, we have
proposed that some sensors play their roles. This is when a
sensor is well enough localized; it plays the role of an anchor
and sends in turn its location to its neighborhood while keeping
its own mobility. The latter extension was called Multi-hop-
SDPL. Overall, the results are promising and many
applications can benefit from these localization methods. For
instance: Disaster Management, Tracking mobile elements,
Smart Cities and others.

CONCLUSION

Real world experiments are currently ongoing with
MICAz [11] motes while the mobile anchor is an embedded
mobile wireless sensor placed on a civil drone commonly
known as UAV (Unmanned Aerial Vehicle) of type
Quadcopter [12]. In the case of multiple anchors, another
drone of type Hexacopter is used and some other vehicles.
Also, we are planning to test our solutions considering 3D
localization.
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