Modelisation of photocourant in organic solar cell using Phthalocyanine/Perylene

In this paper, we report on investigation uses a method of calculation the photocurrent delivered by the organic solar cell double-layer MPP/ZnPc applying the equations of continuities and the currents by analogy to the phenomena of loads transport according to the model of an heterojunction n/p. The principal generation of the photocurrent is localized in the active zone, a very fine area by contribution with the thicknesses of the donor and acceptor layers. Thus let us that the excitons dissociate only in the MPP/ZnPc interface, whereas the zone of absorption is considerably larger than the diffusion length.
The principal photovoltaic parameters of this structure are calculated by the simulation of equation I(V), under illumination AM1. 5. Insertion of the composite layer C60 and ZnPc in the interface of MPP and ZnPc makes it possible to improve the performances of the cell by an increase in the photocurrent of the value 2.6 mA/cm 2 to 5.3 mA/cm 2 and the conversion efficiency η from 0,72% to 1,49%.
We worked out a numerical model based on resolution of equations of continuities who gave results in good accordance with literature and which allowed, moreover a better control of performances of organic cells, for their improvement.

Document joint

| info visites 9129091

Suivre la vie du site fr  Suivre la vie du site Science et Technologie  Suivre la vie du site Journal of New technology and Materials  Suivre la vie du site Volume 04  Suivre la vie du site Numéro 02   ?

Creative Commons License