3D Numerical simulation of a dual metal (Aluminum, Titanium) horizontal square surrounding gate MOSFET

Essentially due to the uninterrupted scaling of MOSFET transistors, it has become absolute obligatory to explore for new transistors architectures in order to reach better control of short channel effects. Also the integrity and issues related to electrostatic performance associated with scaling Silicon MOSFET bulk sub 10 nm channel length promotes research in new device architectures such as SOI, double gate and gate all around GAA MOSFETs [1]. In literature GAA structure has been proposed to reduce the SCEs due to scaling of the MOSFET transistor. GAA structures, that are actually strong candidates for the next generation nanoscale devices, show an even stronger control of short channel effects. In this paper, a double metal square surrounding gate MOSFET for reduces short channel effects is presented. Our results take into account quantum confinement. In the latter part of the paper some 2D simulation results of our structure has been shown using SILVACO TCAD tools. We will also exhibit some simulation results we obtained relating to the influence of some parameters variation on our structure), that have a direct impact on their threshold voltage and drain current. In addition, our Transistor showed reasonable Ion/Ioff ratio of (104) and low drain induced barrier lowering (DIBL) of 39mV/V.

Document joint

| info visites 9045273

Suivre la vie du site fr  Suivre la vie du site Science et Technologie  Suivre la vie du site Journal of New technology and Materials  Suivre la vie du site Volume 04  Suivre la vie du site Numéro 02   ?

Creative Commons License